Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1815006(2024)

Multimodal LiDAR Enhancement Algorithm Based on Multiscale Features

Yikai Luo, Linyuan He*, and shiping Ma
Author Affiliations
  • Aeronautical Engineering College, Air Force Engineering University, Xi'an 710038, Shannxi, China
  • show less
    Figures & Tables(10)
    Schematic diagram of the overall framework of the proposed algorithm
    Schematic diagram of encoder
    Schematic diagram of deformable attention mechanism
    Schematic diagram of decoder
    Visualization of test results
    • Table 1. Test results on the nuScenes test set

      View table

      Table 1. Test results on the nuScenes test set

      AlgorithmModalitymAPNDSCarTruckC.V.BusTrailerBarrierMotorBikePed.T.C.
      HoP30C62.468.577.853.835.252.256.974.270.055.868.279.4
      SparseBEV31C60.367.576.349.235.644.253.476.864.053.765.883.7
      FSTR-L32L70.273.687.158.432.969.360.680.680.257.090.085.7
      FocalFormer3D33L68.772.687.257.034.469.664.977.876.249.688.282.3
      TransFusion-L26L65.570.286.256.728.266.358.878.268.344.286.182.0
      TransFusion26C+L68.971.787.160.033.168.360.878.173.652.988.486.7
      BEVFusion34C+L71.373.388.563.138.172.064.778.375.256.590.086.5
      EA-LSS35C+L76.677.690.267.143.976.769.184.185.966.691.391.2
      FusionFormer-base36C+L72.675.189.862.040.369.863.077.483.064.690.486.0
      MegFusion37C+L75.377.089.866.341.774.568.482.184.065.991.688.8
      FocalFormer3D-F33C+L72.474.588.760.133.771.367.978.880.662.889.986.5
      Proposed algorithmC+L77.178.690.667.544.476.869.984.486.267.591.591.5
    • Table 2. Generalization ability test of proposed model

      View table

      Table 2. Generalization ability test of proposed model

      ModalityPointPillarCenterPointTransFusion-L
      CameraLiDARmAPNDSmAPNDSmAPNDS
      57.161.860.365.365.570.2
      70.172.671.773.077.178.6
    • Table 3. Robustness testing under different weather and lighting conditions

      View table

      Table 3. Robustness testing under different weather and lighting conditions

      AlgorithmModalitySunnyRainyDayNight
      mAPNDSmAPNDSmAPNDSmAPNDS
      SparseBEVC60.667.858.563.460.266.950.354.7
      FSTR-LL70.173.360.165.669.872.667.470.3
      TransFusion-LL66.670.152.358.965.470.560.865.5
      EA-LSSC+L76.477.568.772.576.177.772.075.2
      Proposed algorithmC+L76.877.969.673.076.577.772.375.8
    • Table 4. Robustness testing in case of LiDAR migration

      View table

      Table 4. Robustness testing in case of LiDAR migration

      Discrepancy /mFSTR-LTransFusion-LEA-LSSProposed algorithm
      mAPNDSmAPNDSmAPNDSmAPNDS
      0.069.872.665.470.576.177.776.877.9
      0.269.472.365.070.076.077.676.777.8
      0.468.971.964.169.875.777.476.777.6
      0.868.471.663.568.875.577.176.577.6
    • Table 5. Ablation experiments

      View table

      Table 5. Ablation experiments

      Self-attentionQ.IT.LEpochmAPNDS
      SSA2569.673.3
      SSA4568.772.5
      MHSA2562.766.1
      SSA2566.570.7
      MHSA4559.863.4
    Tools

    Get Citation

    Copy Citation Text

    Yikai Luo, Linyuan He, shiping Ma. Multimodal LiDAR Enhancement Algorithm Based on Multiscale Features[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1815006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 1, 2024

    Accepted: Apr. 18, 2024

    Published Online: Sep. 14, 2024

    The Author Email: Linyuan He (hal1983@163.com)

    DOI:10.3788/LOP240778

    CSTR:32186.14.LOP240778

    Topics