Journal of Synthetic Crystals, Volume. 50, Issue 2, 283(2021)
Diffusion and Nucleation of Aluminum Droplet on GaAs(001)Surface during Molecular Beam Epitaxy Growth
[1] [1] HUFFAKER D L, PARK G, ZOU Z, et al. 1.3 μm room-temperature GaAs-based quantum-dot laser[J]. Applied Physics Letters, 1998, 73(18): 2564-2566.
[2] [2] LIAO M Y, CHEN S M, LIU Z X, et al. Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon[J]. Photonics Research, 2018, 6(11): 1062-1066.
[3] [3] YIFAT Y, ACKERMAN M, GUYOT-SIONNEST P. Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas[J]. Applied Physics Letters, 2017, 110(4): 041106.
[4] [4] YOON S, LEE S H, SHIN J C, et al. Photoreflectance study on the photovoltaic effect in InAs/GaAs quantum dot solar cell[J]. Current Applied Physics, 2018, 18(6): 667-672.
[5] [5] EGOROV A Y, BEDAREV D, BERNKLAU D, et al. Self-assembled InAs quantum dots in an InGaAsN matrix on GaAs[J]. Physica Status Solidi (b), 2001, 224(3): 839-843.
[6] [6] STROM N W, WANG Z M, LEE J H, et al. Self-assembled InAs quantum dot formation on GaAs ring-like nanostructure templates[J]. Nanoscale Research Letters, 2007, 2(2): 112-117.
[7] [7] GARCiA J M, GRANADOS D, SILVEIRA J P, et al. In segregation effects during quantum dot and quantum ring formation on GaAs(001)[J]. Microelectronics Journal, 2004, 35(1): 7-11.
[8] [8] SU L L, WANG Y, GUO Q L, et al. Optical characterization of type-I to type-II band alignment transition in GaAs/AlxGa1-xAs quantum rings grown by droplet epitaxy[J]. Journal of Physics D: Applied Physics, 2017, 50(32): 32LT01.
[9] [9] SUZUKI T, NISHINAGA T. Real time observation and formation mechanism of Ga droplet during molecular beam epitaxy under excess Ga flux[J]. Journal of Crystal Growth, 1994, 142(1/2): 61-67.
[10] [10] JO M, MANO T, SAKUMA Y, et al. Extremely high-density GaAs quantum dots grown by droplet epitaxy[J]. Applied Physics Letters, 2012, 100(21): 212113.
[11] [11] BENYOUCEF M, ZUERBIG V, REITHMAIER J P, et al. Single-photon emission from single InGaAs/GaAs quantum dots grown by droplet epitaxy at high substrate temperature[J]. Nanoscale Research Letters, 2012, 7(1): 493.
[12] [12] YU P, WU J, GAO L, et al. InGaAs and GaAs quantum dot solar cells grown by droplet epitaxy[J]. Solar Energy Materials and Solar Cells, 2017, 161: 377-381.
[13] [13] PANKAOW N, PANYAKEOW S, RATANATHAMMAPHAN S. Formation of In0.5Ga0.5As ring-and-hole structure by droplet molecular beam epitaxy[J]. Journal of Crystal Growth, 2009, 311(7): 1832-1835.
[14] [14] ABUWAAR Z Y, MAZUR Y I, LEE J H, et al. Optical behavior of GaAsAlGaAs ringlike nanostructures[J]. Journal of Applied Physics, 2007, 101(2): 024311.
[15] [15] KANJANACHUCHAI S, EUARUKSAKUL C. Self-running Ga droplets on GaAs (111)A and (111)B surfaces[J]. ACS Applied Materials & Interfaces, 2013, 5(16): 7709-7713.
[16] [16] TRISNA B A, NAKARESEISOON N, EIWWONGCHAROEN W, et al. Reliable synthesis of self-running Ga droplets on GaAs (001) in MBE using RHEED patterns[J]. Nanoscale Research Letters, 2015, 10(1): 184.
[17] [17] TANG W X, ZHENG C X, ZHOU Z Y, et al. Ga droplet surface dynamics during Langmuir evaporation of GaAs[J]. IBM Journal of Research and Development, 2011, 55(4): 10: 1-10: 7.
[18] [18] ROSINI M, MAGRI R, KRATZER P. Adsorption of indium on an InAs wetting layer deposited on the GaAs(001) surface[J]. Physical Review B, 2008, 77(16): 165323.
[19] [19] ESSER N, FRISCH A M, RSELER A, et al. Optical resonances of indium islands on GaAs(001) observed by reflectance anisotropy spectroscopy[J]. Physical Review B, 2003, 67(12): 125306.
[20] [20] MANTOVANI V, SANGUINETTI S, GUZZI M, et al. Low density GaAsAlGaAs quantum dots grown by modified droplet epitaxy[J]. Journal of Applied Physics, 2004, 96(8): 4416-4420.
[21] [21] MANO T, KURODA T, MITSUISHI K, et al. GaAsAlGaAs quantum dot laser fabricated on GaAs (311)A substrate by droplet epitaxy[J]. Applied Physics Letters, 2008, 93(20): 203110.
[22] [22] WU J, WANG Z M, LI A Z, et al. Surface mediated control of droplet density and morphology on GaAs and AlAs surfaces[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2010, 4(12): 371-373.
[23] [23] LI A Z, WANG Z M, WU J, et al. Holed nanostructures formed by aluminum droplets on a GaAs substrate[J]. Nano Research, 2010, 3(7): 490-495.
[24] [24] PONCE F, EGLASH S. Lattice structure and electrical properties of epitaxial aluminum on GaAs[J]. Thin Solid Films, 1983, 104(3/4): 317.
[25] [25] LI H O, CAO G, XIAO M, et al. Fabrication and characterization of an undoped GaAs/AlGaAs quantum dot device[J]. Journal of Applied Physics, 2014, 116(17): 174504.
[26] [26] AVERY A R, DOBBS H T, HOLMES D M, et al. Nucleation and growth of Islands on GaAs surfaces[J]. Physical Review Letters, 1997, 79(20): 3938.
[27] [27] KLEY A, RUGGERONE P, SCHEFFLER M. Novel diffusion mechanism on the GaAs(001) surface: the role of adatom-dimer interaction[J]. Physical Review Letters, 1997, 79(26): 5278.
[28] [28] VENABLES J A, SPILLER G T, HANBUCKEN M. Nucleation and growth of thin films[J]. Reports on Progress in Physics, 1984, 47(4): 399-459.
[29] [29] VENABLES J A, PERSAUD R, METCALFE F L, et al. Rate and diffusion analyses of surface processes[J]. Journal of Physics and Chemistry of Solids, 1994, 55(10): 955-964.
[30] [30] LABELLA V P, BULLOCK D W, EMERY C, et al. Enabling electron diffraction as a tool for determining substrate temperature and surface morphology[J]. Applied Physics Letters, 2001, 79(19): 3065-3067.
[31] [31] LEE J H, LEE J H, WANG ZHM, et al. Size and density control of In droplets at near room temperatures[J]. Nanotechnology, 2009, 20(28): 285602.
[32] [32] HATA M, WATANABE A, ISU T. Surface diffusion length observed by in situ scanning microprobe reflection high-energy electron diffraction[J]. Journal of Crystal Growth, 1991, 111(1/2/3/4): 83-87.
[33] [33] MANO T, KURODA T, MITSUISHI K, et al. High-density GaAs/AlGaAs quantum dots formed on GaAs (311)A substrates by droplet epitaxy[J]. Journal of Crystal Growth, 2009, 311(7): 1828-1831.
Get Citation
Copy Citation Text
JIANG Chong, WANG Yi, DING Zhao, HUANG Yanbin, LUO Zijiang, LI Zhihong, LI Ershi, GUO Xiang. Diffusion and Nucleation of Aluminum Droplet on GaAs(001)Surface during Molecular Beam Epitaxy Growth[J]. Journal of Synthetic Crystals, 2021, 50(2): 283
Category:
Received: Dec. 3, 2020
Accepted: --
Published Online: Mar. 30, 2021
The Author Email:
CSTR:32186.14.