The Journal of Light Scattering, Volume. 36, Issue 1, 52(2024)
Laser-induced electron coherence based on spatial self-phase modulation in quantum materials
[1] [1] Durbin S D, Arakelian S M, Shen Y R. Laser-induced diffraction rings from a nematic-liquid-crystal film[J]. Opt. Lett., 1981, 6(9): 411-413.
[2] [2] Wu R, Zhang Y, Yan S, et al. Purely coherent nonlinear optical response in solution dispersions of graphene sheets[J]. Nano Lett., 2011, 11(12): 5159-5164.
[3] [3] Wu Y, Wu Q, Sun F, et al. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation[J]. PNAS, 2015, 112(38): 11800-11805.
[4] [4] Wu Y L, Zhu L L, Wu Q, et al. Electronic origin of spatial self-phase modulation: Evidenced by comparing graphite with C-60 and graphene[J]. Appl. Phys. Lett., 2016, 108(24): 241110.
[5] [5] Wang W, Wu Y, Wu Q, et al. Coherent Nonlinear Optical Response Spatial Self-Phase Modulation in MoSe2 Nano-Sheets[J]. Sci. Rep., 2016, 6: 22072.
[6] [6] Hu L, Sun F, Zhao H, et al. Nonlinear optical response spatial self-phase modulation in MoTe2: correlations between χ(3) and mobility or effective mass[J]. Opt. Lett., 2019, 44(21): 5214-5217.
[7] [7] Huang Y, Zhao H, Li Z, et al. Laser-induced hole coherence and spatial self-phase modulation in the anisotropic 3D Weyl semimetal TaAs[J]. Adv. Mater., 2023, 35: 2208362.
[8] [8] Zhang J D, Yu X F, Han W J, et al. Broadband spatial self-phase modulation of black phosphor-ous[J]. Opt. Lett., 2016, 41(8): 1704-1707.
[9] [9] Shen Y R, The Principles of Nonlinear Optics[M] (John Wiley & Sons 1984).
[10] [10] Jiang Y Q, Ma Y, Fan Z Y, et al. Abnormal nonlinear optical properties of hybrid graphene-TiO2 nanostructures[J]. Opt. Lett., 2018, 43(3): 523-526.
[11] [11] Xi X X, Wang Z F, Zhao W W, et al. Ising pairing in superconducting NbSe2 atomic layers[J]. Nat. Phys., 2016, 12(2): 139-144.
[12] [12] Shi B, Miao L, Wang Q, et al. Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions[J]. Appl. Phys. Lett., 2015, 107(15): 151101.
[13] [13] Xiao S, Ma Y, He Y, et al. Revealing the intrinsic nonlinear optical response of a single MoS2 nanosheet in a suspension based on spatial self-phase modulation[J]. Photonics Res., 2020, 8(11): 1725-1733.
[14] [14] Jia Y, Shan Y X, Wu L M, et al. Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide[J]. Photonics Res., 2018, 6(11): 1040-1047.
[15] [15] Hu Y, Gao Y, Shi Y, et al. Broadband third-order nonlinear optical responses of black phosphorus nanosheets via spatial self-phase modulation using truncated Gaussian beams[J]. Optics & Laser Technology, 2022, 151.
[16] [16] Xiaodan Xu, Meng Wang, Yaqing Zhang, Qifan Li, Wenshuo Niu, Yifan Yang, Jimin Zhao, Yanling Wu. Broadband spatial self-phase modulation in black and violet phosphorus and near-infrared all-optical switching[J]. Laser Photon. Rev., accepted (2023).
[17] [17] Gao Y, Hu Y Q, Ling C, et al. Degenerate and non-degenerate all-optical switches using violet phosphorus nanosheets[J]. Nanoscale, 2023, 15: 6225-6233.
[18] [18] Li J, Zhang Z L, Yi J, et al. Broadband spatial self-phase modulation and ultrafast response of MXene Ti3C2Tx (T=O, OH or F)[J]. Nanophotonics, 2020, 9(8): 2415-2424.
[19] [19] Wu L M, Dong Y Z, Zhao J L, et al. Kerr Nonlinearity in 2D Graphdiyne for Passive Photonic Diodes[J]. Adv. Mater., 2019, 31(14): 1807981.
[20] [20] Jia Y, Liao Y L, Wu L M, et al. Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation[J]. Nanoscale, 2019, 11(10): 4515-4522.
[21] [21] Li X H, Liu R K, Xie H H, et al. Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets[J]. Opt. Express, 2017, 25(15): 18346-18354.
[22] [22] Mak K F and Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nat. Photon., 2016, 10(4): 216-226.
[23] [23] Rigos A F, Hill H M, Li Y L, et al. Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2[J]. Nano Lett., 2015, 15(8): 5033-5038.
[24] [24] Mak K F, Ju L, Wang F, et al. Optical spectroscopy of graphene: From the far infrared to the ultraviolet[J]. Solid State Communications, 2012, 152(15): 1341-1349.
[25] [25] Han Y, Zhang W, Dong F, et al. Continuous-wave self-focusing and self-phase modulation in C60-benzene solution[J]. Chin. Phys. Lett., 1992, 9(12): 6470256.
[26] [26] Zamiri R, Zakaria A, Ahmad M B, et al. Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension[J]. Optik, 2011, 122(9): 836-838.
[27] [27] Xiao S, Wang C, Chen Z, et al. Research on threshold thickness of spatial self-phase modulation based on Cu1.81S nanocrystals[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2023, 53(8): 284210.
[28] [28] Han X F, Weng Y X, Wang R, et al. Single-photon level ultrafast all-optical switching[J]. Appl. Phys. Lett., 2008, 92(15): 151109.
[29] [29] Kravets V G, Kabashin A V, Barnes W L, et al. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications[J]. Chem. Rev., 2018, 118(12): 5912-5951.
[31] [31] Chai Z, Hu X Y, Wang F F, et al. Ultrafast All-Optical Switching[J]. Adv. Opt. Mater., 2017, 5(7): 1600665.
Get Citation
Copy Citation Text
HUANG Yixuan, ZHAO Jimin. Laser-induced electron coherence based on spatial self-phase modulation in quantum materials[J]. The Journal of Light Scattering, 2024, 36(1): 52
Category:
Received: Dec. 12, 2023
Accepted: --
Published Online: Jul. 22, 2024
The Author Email: Jimin ZHAO (jmzhao@iphy.ac.cn)