Semiconductor Optoelectronics, Volume. 46, Issue 2, 313(2025)

Effect of High-Vacuum Annealing Treatment on the Performance of Ultra-thin Metal Film-based Transparent Electrodes

LUO Guoping, WANG Guohao, LI Wei, WANG Meizhen, JIANG Jingwen, LUO Yuanxing, and ZHU Weiling
Author Affiliations
  • School of Science, Guangdong University of Petrochemical Technology, Maoming 525000, CHN
  • show less
    References(24)

    [1] [1] Ellmer K. Past achievements and future challenges in the development of optically transparent electrodes[J]. Nature Photonics, 2012, 6(12): 809-817.

    [2] [2] Bi Y G, Liu Y F, Zhang X L, et al. Ultrathin metal films as the transparent electrode in ITO-free organic optoelectronic devices[J]. Advanced Optical Materials, 2019, 7(6): 1800778.

    [3] [3] Yun J. Ultrathin metal films for transparent electrodes of flexible optoelectronic devices[J]. Advanced Functional Materials, 2017, 27(18): 1606641.

    [4] [4] Liu Y, Zeng Q, Wang B, et al. Improved performance of transparent conductive Cu-based GZO multilayer thin films on flexible substrates via two Al2O3 layers and oxygen-containing atmosphere[J]. Journal of Alloys and Compounds, 2021, 874: 159949.

    [5] [5] Zhao G, Song M, Chung H S, et al. Optical transmittance enhancement of flexible copper film electrodes with a wetting layer for organic solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38695-38705.

    [6] [6] Lu X, Zhang Y, Zheng Z. Metal-based flexible transparent electrodes: Challenges and recent advances[J]. Advanced Electronic Materials, 2021, 7(5): 2001121.

    [7] [7] Kong H, Lee H Y. High performance flexible transparent conductive electrode based on ZnO/AgOx/ZnO multilayer[J]. Thin Solid Films, 2020, 696: 137759.

    [8] [8] Zhao Z, Alford T L. The effect of hole transfer layers and anodes on indium-free TiO2/Ag/TiO2 electrode and ITO electrode based P3HT∶PCBM organic solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 176: 324-330.

    [9] [9] Rabia D E, Blais M, Essaidi H, et al. Stabilisation of Cu films in WO3/Ag/Cu∶Al/WO3 structures through their doping by Al and Ag[J]. Thin Solid Films, 2019, 669: 613-619.

    [10] [10] Jiang S, Feng L, Zhang W, et al. Indium-free flexible perovskite solar cells with AZO/Cu/Ag/AZO multilayer transparent electrodes[J]. Solar Energy Materials and Solar Cells, 2022, 246: 111895.

    [12] [12] Lee S H, Kim G, Lim J W, et al. High-performance ZnO∶Ga/Ag/ZnO∶Ga multilayered transparent electrodes targeting large-scale perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 186: 378-384.

    [13] [13] Ying Z, Chen W, Lin Y, et al. Supersmooth Ta2O5/Ag/polyetherimide film as the rear transparent electrode for high performance semitransparent perovskite solar cells[J]. Advanced Optical Materials, 2019, 7(4): 1801409.

    [14] [14] Zhang C, Zhao D, Gu D, et al. An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics[J]. Advanced Materials, 2014, 26(32): 5696-5701.

    [15] [15] Huang J, Liu X, Lu Y, et al. Seed-layer-free growth of ultra-thin Ag transparent conductive films imparts flexibility to polymer solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 184: 73-81.

    [17] [17] Hu E T, Wang M, Ni K, et al. Influence of thermal annealing on the optical and electrical properties of Ag-Al ultrathin film-based sandwich-like transparent conductor[J]. Thin Solid Films, 2022, 759: 139484.

    [18] [18] Chen T H, Su H D. Effect of annealing temperature on optical and electrical properties of ZnO/Ag/ZnO multilayer films for photosensor[J]. Sensors and Materials, 2018, 30(11): 2541.

    [19] [19] Jeong J W, Kong H, Lee H Y. Effect of Ni-doped Ag on the thermal stability of ZnO/Ag/ZnO multilayer thin films[J]. Superlattices and Microstructures, 2019, 133: 106187.

    [20] [20] Huo J Z, Wei M Z, Ma Y J, et al. The enhanced strength and electrical conductivity in Ag/Cu multilayers by annealing process[J]. Materials Science and Engineering: A, 2020, 772: 138818.

    [21] [21] Zulaika Bhari B, Sajedur Rahman K, Chelvanathan P, et al. Tailoring the structural and optical properties of MZO thin film[J]. Materials Letters, 2023, 339: 134097.

    [22] [22] Zhao G, Shen W, Jeong E, et al. Nitrogen-mediated growth of silver nanocrystals to form ultra thin, high-purity silver-film electrodes with broad band transparency for solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(47): 40901-40910.

    [23] [23] Chen N, Xu H, Jiang X, et al. Ultra-thin silver oxide/silver transparent anodes for high-efficiency organic light-emitting devices[J]. Applied Surface Science, 2022, 603: 154421.

    [24] [24] Song G, Wang Y, Tan D Q. A review of surface roughness impact on dielectric film properties[J]. IET Nanodielectrics, 2022, 5(1): 1-23.

    [25] [25] Zhang C, Zhao J, Wu H, et al. The enhancement of thermal endurance in doped low emissive ZnO/Ag/ZnO multilayer thin film[J]. Journal of Alloys and Compounds, 2020, 832: 154983.

    [26] [26] Yu Z, Leng J, Xue W, et al. Highly flexible transparent and conductive ZnS/Ag/ZnS multilayer films prepared by ion beam assisted deposition[J]. Applied Surface Science, 2012, 258(7): 2270-2274.

    Tools

    Get Citation

    Copy Citation Text

    LUO Guoping, WANG Guohao, LI Wei, WANG Meizhen, JIANG Jingwen, LUO Yuanxing, ZHU Weiling. Effect of High-Vacuum Annealing Treatment on the Performance of Ultra-thin Metal Film-based Transparent Electrodes[J]. Semiconductor Optoelectronics, 2025, 46(2): 313

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 23, 2024

    Accepted: Sep. 18, 2025

    Published Online: Sep. 18, 2025

    The Author Email:

    DOI:10.16818/j.issn1001-5868.20240923003

    Topics