Acta Optica Sinica, Volume. 45, Issue 15, 1510004(2025)

Deep Learning-Based Polarization Image Fusion for Sparse Aperture Optical Systems

Xiyu Liu1,3, Jun Wang1、*, Quanying Wu1、**, Junliu Fan1, Baohua Chen1, Zhixiang Li1,2, and An Xu1,2
Author Affiliations
  • 1Key Laboratory of Efficient Low-Carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu , China
  • 2Jiangsu Province Graduate Workstation, Suzhou FOIF Co., Ltd., Suzhou 215006, Jiangsu , China
  • 3Jiangsu Province Graduate Workstation, Zhangjiagang Optical Instrument Co., Ltd., Suzhou 215616, Jiangsu , China
  • show less
    Figures & Tables(16)
    Golay 3 optical system pupil map and PSF. (a) Pupil diagram; (b) 2D distribution of PSF
    Golay 3 optical system MTF. (a) 2D distribution of MTF; (b) MTF curve
    Experimental flowchart
    PSAFNet encoder
    Fusion module structure
    Experimental schematic diagram
    Image processing flowchart. (a) Images under different polarization directions; (b) Stokes parameter images; (c) DoLP and AoP images; (d) fused image
    Mid-frequency information and edge feature extraction. (a) SA image; (b) SA mid-frequency image; (c) SA mid-frequency edge; (d) PSAFNet image; (e) PSAFNet mid-frequency image; (f) PSAFNet mid-frequency edge
    Quantitative comparison of mid-frequency edge characteristics
    Indoor scene experimental results. (a) WT; (b) CVT; (c) RP; (d) PCNN; (e) PFNet; (f) PSAFNet; (g) FA
    Image processing flowchart. (a) Images under different polarization directions; (b) Stokes parameter images; (c) DoLP and AoP images; (d) fused image
    Mid-frequency information and edge feature extraction. (a) SA image; (b) SA mid-frequency image; (c) SA mid-frequency edge; (d) PSAFNet image; (e) PSAFNet mid-frequency image; (f) PSAFNet mid-frequency edge
    Quantitative comparison of mid-frequency edge characteristics
    Outdoor scene experimental results. (a) WT; (b) CVT; (c) RP; (d) PCNN; (e) PFNet; (f) PSAFNet; (g) FA
    • Table 1. Indoor scene image fusion evaluation metrics

      View table

      Table 1. Indoor scene image fusion evaluation metrics

      SAWTCVTRPPCNNPFNetPSAFNet
      EN6.3977.2336.6686.8254.0686.8957.043
      SD48.75243.39528.84243.56149.11854.02679.703
      MS-SSIM0.9850.7730.7800.9170.7840.7870.959
    • Table 2. Outdoor Scene Image Fusion Evaluation Metrics

      View table

      Table 2. Outdoor Scene Image Fusion Evaluation Metrics

      SAWTCVTRPPCNNPFNetPSAFNet
      EN7.2087.1476.8257.2675.3486.9287.464
      SD52.56849.81836.72652.34767.68947.91568.525
      MS-SSIM0.8790.7390.6580.8380.8880.6730.925
    Tools

    Get Citation

    Copy Citation Text

    Xiyu Liu, Jun Wang, Quanying Wu, Junliu Fan, Baohua Chen, Zhixiang Li, An Xu. Deep Learning-Based Polarization Image Fusion for Sparse Aperture Optical Systems[J]. Acta Optica Sinica, 2025, 45(15): 1510004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Mar. 13, 2025

    Accepted: May. 8, 2025

    Published Online: Aug. 15, 2025

    The Author Email: Jun Wang (wjk31@163.com), Quanying Wu (wqycyh@usts.edu.cn)

    DOI:10.3788/AOS250738

    CSTR:32393.14.AOS250738

    Topics