Journal of the Chinese Ceramic Society, Volume. 52, Issue 10, 3327(2024)

Research Progress on Carbon Materials Modified SiOC Anodes in Lithium-Ion Batteries

ZHANG Junzhan1,2, HAN Qing1, CHEN Hongxia1, SHI Zongmo1,2, LIU Yongsheng3, LEI Wanying1, WEI Jian1,2, and ZHANG Ying1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(79)

    [1] [1] DUNN B, KAMATC H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058):928–935.

    [2] [2] ISLAM M S, FISHER C A J. Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties[J]. Chem Soc Rev, 2014, 43(1): 185–204.

    [3] [3] CHENG H, SHAPTER J G, LI Y, et al. Recent progress of advanced anode materials of lithium-ion batteries[J]. J Energy Chem, 2021, 57(6):451–468.

    [4] [4] BALOGUN M S, QIU W, LUO Y, et al. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials[J]. Nano Res, 2016, 9(10): 2823–2851.

    [5] [5] WANG X, CHEN J, DONG C, et al. Hard carbon derived from graphite anode by mechanochemistry and the enhanced lithium-ion storage performance[J]. ChemElectroChem, 2022, 9(5): 202101613.

    [6] [6] LI S, WANG K, ZHANG G, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Adv Funct Mater, 2022, 32(23): 2200796.

    [7] [7] SANDHYA C P, JOHN B, GOURI C. Lithium titanate as anode material for lithium-ion cells: A review[J]. Ionics, 2014, 20(5):601–620.

    [8] [8] WANG Q, ZHANG J, LOU Y, et al. Characteristic of gas evolution in lithium-ion batteries using an anode based on lithium titanate[J]. Prog Chem, 2014, 26(11): 1772–1780.

    [9] [9] LIU R, MA G, LI H. Recent progress of lithium titanate as anode material for high performance lithium-ion batteries[J]. Ferroelectrics,2021, 580(1): 172–194.

    [10] [10] BITEW Z, TESEMMA M, BEYENE Y, et al. Nano-structured silicon and silicon based composites as anode materials for lithium ion batteries: recent progress and perspectives[J]. Sustain Enegry Fuels,2022, 6(4): 1014–1050.

    [11] [11] MENG W J, HAN X Y, HOU Y L, et al. Defect-repaired reduced graphene oxide caging silicon nanoparticles for lithium-ion anodes with enhanced reversible capacity and cyclic performance[J].Electrochim Acta, 2021, 382: 138271.

    [12] [12] ZHANG Q, ZHANG F, ZHANG M, ET AL. A highly efficient silicone-modified polyamide acid binder for silicon-based anode in lithium-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(7):7209–7218.

    [13] [13] FANG G, DENG X, ZOU J, et al. Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries[J]. Electrochim Acta, 2019, 295: 498–506.

    [14] [14] MI H, YANG X, LI Y, et al. A self-sacrifice template strategy to fabricate yolk-shell structured silicon@void@carbon composites for high-performance lithium-ion batteries[J]. Chem Eng J, 2018, 351:103–109.

    [15] [15] LIU Y, JING S X, LUO S H, et al. Non-volatile natural products in plant glandular trichomes: Chemistry, biological activities and biosynthesis[J]. Nat Prod Rep, 2019, 36(4): 626–665.

    [16] [16] JIAO M, WANG Y, YE C, et al. High-capacity SiOx (0≤x≤2) as promising anode materials for next-generation lithium-ion batteries[J].J Alloys Compd, 2020, 842: 155774.

    [17] [17] SONG J, GUO S, KOU L, et al. Controllable synthesis Honeycomb-like structure SiOx/C composites as anode for high-performance lithium-ion batteries[J]. Vacuum, 2021, 186: 110044.

    [18] [18] ZHANG J, HOU Z, ZHANG X, et al. Delicate construction of Si@SiOx composite materials by microwave hydrothermal for lithium-ion battery anodes[J]. Ionics, 2020, 26: 69–74.

    [19] [19] WILSON A M, XING W, ZANK G, et al. Pyrolysed pitch-polysilane blends for use as anode materials in lithium ion batteries II: The effect of oxygen[J]. Solid State Ionics, 1997, 100(3): 259–266.

    [20] [20] WILSON A M, REIMERS J N, FULLER E W, et al. Lithium insertion in pyrolyzed siloxane polymers[J]. Solid State Ionics, 1994, 74(3):249–254.

    [21] [21] WILSON A M, ZANK G, EGUCHI K, et al. Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries[J]. J Power Sources, 1997, 68(2): 195–200.

    [22] [22] XING W, WILSON A M, ZANK G, et al. Pyrolysed pitch-polysilane blends for use as anode materials in lithium ion batteries[J]. Solid State Ionics, 1997, 93(3): 239–244.

    [23] [23] XING W, WILSON A M, EGUCHI K, et al. Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries[J]. J Electrochem Soc, 1997, 144(7): 2410–2416.

    [24] [24] WANG J T, WANG Y, HUANG B, et al. Silicon supported on Stable SiOC skeleton in high-performance lithium-ion battery anode materials[J]. Acta Phys-Chim Sin, 2014, 30(2): 305–310.

    [25] [25] FUKUI H, OHSUKA H, HINO T, et al. Polysilane/acenaphthylene blends toward Si–O–C composite anodes for rechargeable lithium-ion batteries[J]. J Electroche Soc, 2011, 158(5): A550–A555.

    [26] [26] HALIM M, HUDAYA C, KIM A Y, et al. Phenyl-rich silicone oil as a precursor for SiOC anode materials for long-cycle and high-rate lithium ion batteries[J]. J Mater Chem A, 2016, 4(7): 2651–2656.

    [27] [27] LIAO N, ZHENG B, ZHOU H, et al. Effect of carbon content on the structure and electronic properties of silicon oxycarbide anodes for lithium-ion batteries: A first-principles study[J]. J Mater Chem A, 2015,3(9): 5067–5071.

    [28] [28] LIU G, KASPAR J, REINOLD L M, et al. Electrochemical performance of DVB-modified SiOC and SiCN polymer-derived negative electrodes for lithium-ion batteries[J]. Electrochim Acta, 2013,106: 101–108.

    [29] [29] LIU X, ZHENG M C, XIE K, et al. The relationship between the electrochemical performance and the composition of Si–O–C materials prepared from a phenyl-substituted polysiloxane utilizing various processing methods[J]. Electrochim Acta, 2012, 59: 304–309.

    [30] [30] YAN M, QIN Y, WANG L, et al. Recent advances in biomass-derived carbon materials for sodium-ion energy storage devices[J].Nanomaterials, 2022, 12(6): 930.

    [31] [31] MOLAIYAN P, DOS REIS G S, KARUPPIAH D, et al. Recent progress in biomass-derived carbon materials for Li-ion and Na-ion batteries–A review[J]. Batteries, 2023, 9(2): 116.

    [32] [32] BHANDAVAT R, COLOGNA M, SINGH G. Polymer-derived SiOC–CNT paper as lithium-ion battery anodes[J]. Nanomater Energy,2012, 1(1): 57–61.

    [33] [33] PAN J, PAN J, CHENG X, et al. Synthesis of hierarchical porous silicon oxycarbide ceramics from preceramic polymer and wood biomass composites[J]. J Eur Ceram Soc, 2014, 34(2): 249–256.

    [34] [34] SHAO G, HANAOR D, WANG J, et al. Polymer-derived SiOC integrated with a graphene aerogel as a highly stable Li-ion battery anode[J]. ACS Appl Mater Interfaces, 2020, 12(41): 46045–46056.

    [35] [35] LIU Z, YU Q, ZHAO Y, et al. Silicon oxides: a promising family of anode materials for lithium-ion batteries[J]. Chem Soc Rev, 2019,48(1): 285–309.

    [36] [36] BOIS L, MAQUET J, BABONNEAU F, et al. Structural characterization of sol–gel derived oxycarbide glasses. 2. Study of the thermal stability of the silicon oxycarbide phase[J]. Chem Mater, 1995,7(5): 975–981.

    [37] [37] CORRIU R, LECLERCQ D, MUTIN P, et al. Preparation and structure of silicon oxycarbide glasses derived from polysiloxane precursors[J].J Sol-Gel Sci Technol, 1997, 8(1): 327–330.

    [38] [38] SAHA A, RAJ R, WILLIAMSON D L, A Model for the nanodomains in polymer-derived SiCO[J]. J Am Ceram, 2006, 89(7): 2188–2195.

    [39] [39] SUN H, ZHAO K, Atomistic origins of high capacity and high structural stability of polymer-derived SiOC anode materials[J]. ACS Appl Mater Interfaces, 2017, 9(40): 35001–35009.

    [40] [40] FUKUI H, NAKATA N, DOKKO K, et al. Lithiation and delithiation of silicon oxycarbide single particles with a unique microstructure[J].ACS Appl Mater Interfaces, 2011, 3(7): 2318-2322.

    [41] [41] HAAKS M, KASPAR J, FRANZ A, et al. 7Li NMR studies of lithium ion dynamics in polymer-derived silicon oxycarbide ceramics[J]. Solid State Ionics, 2016, 287: 28–35.

    [42] [42] FUKUI H, OHSUKA H, HINO T, et al. Preparation of microporous Si–O–C composite material and its lithium storage capability[J]. Chem Lett, 2009, 38(1): 86–87.

    [43] [43] FUKUI H, OHSUKA H, HINO T, et al., A Si-O-C composite anode: high capability and proposed mechanism of lithium storage associated with microstructural characteristics[J]. ACS Appl Mater Interfaces,2010, 2(4): 998–1008.

    [44] [44] HALIM M, LIU G, ARDHI R, et al. Pseudocapacitive characteristics of low-carbon silicon oxycarbide for lithium-ion capacitors[J]. ACS Appl Mater Interfaces, 2017, 9(24): 20566–20576.

    [45] [45] LIU X, ZHENG M C, XIE K, Mechanism of lithium storage in Si-O-C composite anodes[J]. J Power Sources, 2011, 196(24): 10667–10672.

    [46] [46] ZHOU L, ZHANG K, HU Z, et al. Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries[J]. Adv Energy Mater, 2018, 8(6): 1701415.

    [47] [47] ZUO X, ZHU J, MULLER-BUSCHBAUM P, et al. Silicon based lithium-ion battery anodes: A chronicle perspective review[J]. Nano Energy, 2017, 31: 113–143.

    [48] [48] WU Z, CHENG X, TIAN D, et al. SiOC nanolayers directly-embedded in graphite as stable anode for high-rate lithium ion batteries[J]. Chem Eng J, 2019, 375: 121997.

    [49] [49] KNOZOWSKI D, GRACZYK-ZAJAC M, VRANKOVIC D, et al., New insights on lithium storage in silicon oxycarbide/carbon composites: Impact of microstructure on electrochemical properties[J]. Composites, Part B, 2021, 225: 109302.

    [50] [50] KONNO H, MORISHITA T, WAN C, et al. Si-C-O glass-like compound/exfoliated graphite composites for negative electrode of lithium ion battery[J]. Carbon, 2007, 45(3): 477–483.

    [51] [51] KUSRINI E, PRIYONO B, EGIEARA N C, et al. The effect of activated carbon and silicon oxycarbide as anode materials on lithium-ion battery[C]. E3S Web Conf, 2018, 67(4): 03027.

    [52] [52] CHEN N, MA Z, LI H, et al. Asphalt-based carbon boosts the cyclability and rate capability of SiOC anode for high-performance lithium ion batteries[J]. Ionics, 2022, 28(9): 4177–4184.

    [53] [53] BHANDAVAT R, SINGH G, Stable and efficient Li-ion battery anodes prepared from polymer-derived silicon oxycarbide-carbon nanotube shell/core composites[J]. J Phys Chem C, 2013, 117(23):11899–11905.

    [54] [54] NARA H, YOKOSHIMA T, MOMMA T, et al. Highly durable SiOC composite anode prepared by electrodeposition for lithium secondary batteries[J]. Energ Environ Sci, 2012, 5(4): 6500–6505.

    [55] [55] AHN S, JEONG M, YOKOSHIMA T, et al. Electrophoretically deposited carbon nanotube anchor layer to improve areal capacity of Si–O–C composite anode for lithium secondary batteries[J]. J Power Sources, 2016, 336: 203–211.

    [56] [56] MO R, TAN X, LI F, et al. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities[J]. Nat Commun, 2020, 11(1): 1374.

    [57] [57] JI F, LI Y-L, FENG J M, et al. Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries[J]. J Mater Chem, 2009, 19(47): 9063–9067.

    [58] [58] REN Y, YANG B, HUANG X, et al. Intercalated SiOC/graphene composites as anode material for Li-ion batteries[J]. Solid State Ionics,2015, 278: 198–202.

    [59] [59] KOLATHODI M S, DAVID L, ABASS M A, et al.Polysiloxane-functionalized graphene oxide paper: Pyrolysis and performance as a Li-ion battery and supercapacitor electrode[J]. RSC Adv, 2016, 6(78): 74323–74331.

    [60] [60] DAVID L, BHANDAVAT R, BARRERA U, et al. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries[J]. Nat Commun, 2016, 7(1): 10998.

    [61] [61] SANG Z, ZHAO Z, SU D, et al. SiOC nanolayer wrapped 3D interconnected graphene sponge as a high-performance anode for lithium ion batteries[J]. J Mater Chem A, 2018, 6(19): 9064–9073.

    [62] [62] SANG Z, YAN X, WEN L, et al., A graphene-modified flexible SiOC ceramic cloth for high-performance lithium storage[J]. Energy Storage Mater, 2020, 25: 876–884.

    [63] [63] ISLAM M S, KARIM M R, ISLAM S, et al. In situ generation of silicon oxycarbide phases on reduced graphene oxide for Li-ion battery anode[J]. ChemistrySelect, 2016, 1(20): 6429–6433.

    [64] [64] ZHANG T W, SHEN B, YAO H-B, et al., Prawn shell derived chitin nanofiber membranes as advanced sustainable separators for Li/Na-ion batteries[J]. Nano Lett, 2017, 17(8): 4894–4901.

    [65] [65] FRANCA E F, LEITE F L, CUNHA R A, et al. Designing an enzyme-based nanobiosensor using molecular modeling techniques[J].Phys Chem Chem Phys, 2011, 13(19): 8894–8899.

    [66] [66] LI Y, HU Y, LU Y, et al. One-dimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries[J]. J Power Sources, 2014, 254: 33–38.

    [67] [67] LI H, YAN X, MA Z, et al. Silicon oxycarbide-carbon hybrid nanofibers: A promising anode for ultralong-cycle lithium ion batteries with high rate capability[J]. Ceram Int, 2021, 47(5): 6867–6874.

    [68] [68] XIE Q, BAO R, XIE C, et al. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density[J]. J Power Sources, 2016,317: 133–142.

    [69] [69] LEE K H, OH J, SON J G, et al. Nitrogen-doped graphene nanosheets from bulk graphite using microwave irradiation[J]. ACS Appl Mater Interfaces, 2014, 6(9): 6361–6368.

    [70] [70] MA M, WANG H, LI X, et al. Free-standing SiOC/nitrogen-doped carbon fibers with highly capacitive Li storage[J]. J Eur Ceram Soc, 2020, 40(15): 5238–5246.

    [71] [71] HUANG X, CHRISTOPHER B, CHAI S, et al. Cowpea-like N-Doped silicon oxycarbide/carbon nanofibers as anodes for high-performance lithium-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(2):1677–1686.

    [72] [72] AMARAL M M, MUJIB S B, SANTOS E A, et al. A sulfur host based on silicon oxycarbide for advanced lithium-sulfur batteries[J]. J Energy Storage, 2023, 72: 108388.

    [73] [73] XIA Y, FANG R, XIAO Z, et al. Supercritical fluid assisted biotemplating synthesis of Si–O–C microspheres from microalgae for advanced Li-ion batteries[J]. RSC Adv, 2016, 6(74): 69764–69772.

    [74] [74] XIA Y, CAI S, LU C, et al. Rose pollens as sustainable biotemplates for porous SiOC microellipsoids with enhanced lithium storage performance[J]. J Alloys Compd, 2020, 816: 152595.

    [75] [75] TAO X, WANG J, LIU C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nat Commun, 2016, 7(1): 11203.

    [76] [76] ZOU J, ZHU J, YANG Z, et al. A phototheranostic strategy to continuously deliver singlet oxygen in the dark and hypoxic tumor microenvironment[J]. Angew Chem Int Edit, 2020, 59(23): 8833–8838.

    [77] [77] DEY S, SINGH G, WS2 nanosheet loaded silicon-oxycarbide electrode for sodium and potassium batteries[J]. Nanomaterials, 2022, 12(23):4185.

    [78] [78] PARK J, KIM M, CHOI M, et al. Sb/C composite embedded in SiOC buffer matrix via dispersion property control for novel anode material in sodium-ion batteries[J]. J Power Sources, 2023, 568: 232908.

    [79] [79] WEINBERGER M, SU P H, PETERLIK H, et al. Biphenyl-bridged organosilica as a precursor for mesoporous silicon oxycarbide and its application in lithium and sodium ion batteries[J]. Nanomaterials, 2019,9(5): 754.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Junzhan, HAN Qing, CHEN Hongxia, SHI Zongmo, LIU Yongsheng, LEI Wanying, WEI Jian, ZHANG Ying. Research Progress on Carbon Materials Modified SiOC Anodes in Lithium-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2024, 52(10): 3327

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 12, 2024

    Accepted: --

    Published Online: Nov. 14, 2024

    The Author Email: Ying ZHANG (xayzhang@xauat.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240275

    Topics