Acta Photonica Sinica, Volume. 52, Issue 5, 0552202(2023)

High-power Single-frequency Continuous 589 nm Diamond Sodium Guide Laser(Invited)

Wei YOU1,2,5, Xuezong YANG2,3,4,5、*, Yuxiang SUN2, Muye LI2,5, Huawei JIANG1, Dijun CHEN1,2,5, Weibiao CHEN1,2,5, and Yan FENG1,2,5
Author Affiliations
  • 1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 3State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 4State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China
  • 5University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(27)

    [1] MELBOURNE J, WRIGHT S A, BARCZYS M et al. Merging galaxies in GOODS-S: first extragalactic results from keck laser adaptive optics[J]. The Astrophysical Journal, 625, L27(2005).

    [2] RUSU C E, OGURI M, INADA N et al. SDSS J133401. 39+ 331534.3: a new subarcsecond gravitationally lensed quasar[J]. The Astrophysical Journal, 738, 30(2011).

    [3] BENNET F, D'ORGEVILLE C, GAO Y et al. Adaptive optics for space debris tracking[C], 9148, 518-526(2014).

    [4] D'ORGEVILLE C, BENNET F, BLUNDELL M et al. A sodium laser guide star facility for the ANU/EOS space debris tracking adaptive optics demonstrator[C], 9148, 1158-1173(2014).

    [5] TOLKER-NIELSEN T, GUILLEN J C. SILEX: the first European optical communication terminal in orbit[J]. ESA bulletin, 96, 998(1998).

    [6] GÜTLICH B, MEYER R, PHILLIP-MAY S et al. German roadmap on optical communication in space[C], LM1B. 2(2013).

    [7] PURUCKER M, SABAKA T, LE G et al. Magnetic field gradients from the ST‐5 constellation: improving magnetic and thermal models of the lithosphere[J]. Geophysical Research Letters, 34, L24306(2007).

    [8] FRIEDMAN H W, AVICOLA K, BISSINGER H D et al. Laser guide-star measurements at lawrence livermore national laboratory[C], 1920, 52-60(1993).

    [9] LU Y, ZHANG L, XU X et al. 208 W all-solid-state sodium guide star laser operated at modulated-longitudinal mode[J]. Optics Express, 27, 20282-20289(2019).

    [10] ZHANG L, JIANG H, CUI S et al. Versatile Raman fiber laser for sodium laser guide star[J]. Laser & Photonics Reviews, 8, 889-895(2014).

    [11] KITZLER O, MCKAY A, MILDREN R P. Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser[J]. Optics Letters, 37, 2790-2792(2012).

    [12] WILLIAMS R J, NOLD J, STRECKER M et al. Efficient Raman frequency conversion of high‐power fiber lasers in diamond[J]. Laser & Photonics Reviews, 9, 405-411(2015).

    [13] WILLIAMS R J, KITZLER O, BAI Z et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-14(2018).

    [14] ANTIPOV S, SABELLA A, WILLIAMS R J et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2=15 beam[J]. Optics Letters, 44, 2506-2509(2019).

    [15] LUX O, SARANG S, KITZLER O et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain[J]. Optica, 3, 876-881(2016).

    [16] MARTIN K I, CLARKSON W A, HANNA D C. Self-suppression of axial mode hopping by intracavity second-harmonic generation[J]. Optics Letters, 22, 375-377(1997).

    [17] YANG X, KITZLER O, SPENCE D J et al. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain[J]. Optics Letters, 44, 839-842(2019).

    [18] YANG X, YU Z, XU L et al. Underwater ghost imaging based on generative adversarial networks with high imaging quality[J]. Optics Express, 29, 28388-28405(2021).

    [19] KITZLER O, MCKAY A, SPENCE D J et al. Modelling and optimization of continuous-wave external cavity Raman lasers[J]. Optics Express, 23, 8590-8602(2015).

    [20] KATO K. Temperature-tuned 90° phase-matching properties of LiB3O5[J]. IEEE Journal of Quantum Electronics, 30, 2950-2952(1994).

    [21] SUN Y, LI M, MILDREN R P et al. High-power continuous-wave single-frequency diamond Raman laser at 1178 nm[J]. Applied Physics Letters, 121, 141104(2022).

    [22] JASBEER H, WILLIAMS R J, KITZLER O et al. Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance[J]. Journal of the Optical Society of America B, 33, B56-B64(2016).

    [23] SMITH A V[M]. Crystal nonlinear optics: with SNLO examples(2018).

    [24] CUI S, ZENG X, JIANG H et al. Robust single-frequency 589 nm fiber laser based on phase modulation and passive demodulation[J]. Optics Express, 30, 9112-9118(2022).

    [25] GRANADOS E, STOIKOS G, ECHARRI D T et al. Tunable spectral squeezers based on monolithically integrated diamond Raman resonators[J]. Applied Physics Letters, 120, 151101(2022).

    [26] KUMAR S C, SAMANTA G K, EBRAHIMZADEH M. High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO: sPPLT[J]. Optics Express, 17, 13711-13726(2009).

    [27] ZENG X, CUI S, QIAN J et al. 10 W low-noise green laser generation by the single-pass frequency doubling of a single-frequency fiber amplifier[J]. Laser Physics, 30, 075001(2020).

    Tools

    Get Citation

    Copy Citation Text

    Wei YOU, Xuezong YANG, Yuxiang SUN, Muye LI, Huawei JIANG, Dijun CHEN, Weibiao CHEN, Yan FENG. High-power Single-frequency Continuous 589 nm Diamond Sodium Guide Laser(Invited)[J]. Acta Photonica Sinica, 2023, 52(5): 0552202

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Advanced Science and Technology of Astronomical Optics

    Received: Dec. 25, 2022

    Accepted: Mar. 2, 2023

    Published Online: Jul. 19, 2023

    The Author Email: Xuezong YANG (xuezong.yang@ucas.ac.cn)

    DOI:10.3788/gzxb20235205.0552202

    Topics