Acta Optica Sinica, Volume. 44, Issue 21, 2106007(2024)

Interpretable Feature Selection Method for Optical-Fiber Disturbance Signal Recognition

Min Sun and Nian Fang*
Author Affiliations
  • School of Communication and Information Engineering, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
  • show less
    Figures & Tables(14)
    Flow chart of signal recognition with explainable feature selection method
    Structure of φ-OTDR system for dataset acquisition[25]
    Time-domain signals of six types of events. (a) Background noise; (b) digging; (c) knocking; (d) watering; (e) shaking; (f) walking
    Confusion matrices of four models without feature selection. (a) SVM; (b) KNN; (c) DT; (d) RF
    Influences of different features on model prediction results
    Feature importance rank of four models based on SHAP. (a) SVM; (b) KNN; (c) DT; (d) RF
    Confusion matrices of four models after feature selection. (a) SVM; (b) KNN; (c) DT; (d) RF
    • Table 1. Details of dataset

      View table

      Table 1. Details of dataset

      Event typeNumber of training samplesNumber of test samplesLabel
      Background noise23575890
      Digging20105021
      Knocking20245062
      Watering18024513
      Shaking21825464
      Walking19604905
    • Table 2. Definitions of time-domain features

      View table

      Table 2. Definitions of time-domain features

      FeatureDefinitionFeatureDefinition
      Peak valueXPK=max(x)Standard deviationXStd=XVar
      MinimumXMin=min(x)EnergyXE=xi2
      Peak to peak valueXPKPK=XPK-XMinKurtosisXKur=1ni=1nxi-x¯4XRMS4
      MeanXMean=1ni=1nxiSkewnessXSkew=1ni=1nxi-x¯Xstd3
      Rectified mean valueXRMV=1ni=1n|xi|Margin factorXMF=XPKXRSA
      Root mean squareXRMS=1ni=1nxi2Peak factorXPF=XPKXRMS
      Root square amplitudeXRSA=1ni=1n|xi|2Impulse factorXIF=XPKXRMV
      VarianceXVar=1ni=1nxi-x¯2Shape factorXSF=XRMSXRMV
    • Table 3. Definitions of frequency-domain features

      View table

      Table 3. Definitions of frequency-domain features

      FeatureDefinitionFeatureDefinition
      LLP energyXLLPE=k=1ND1(k)2LHP energyXLHPE=k=1ND2(k)2
      HLP energyXHLPE=k=1ND3(k)2HHP energyXHHPE=k=1ND4(k)2
      Wavelet entropyXWE=-i=14p(i)·log2 p(i)Wavelet information quantumXWIQ=i=14p(i)·E(i)
    • Table 4. Recognition results of four models without feature selection

      View table

      Table 4. Recognition results of four models without feature selection

      ModelLabelP /%R /%F1 /%A /%
      SVM170.3876.6973.4081.68
      286.6787.3587.01
      486.3493.7789.90
      KNN187.7291.0489.3594.29
      294.1899.2196.63
      497.7997.0797.43
      DT189.2479.2883.9785.31
      291.5592.0991.82
      493.7493.2293.48
      RF196.1689.8492.8996.11
      297.4698.6298.04
      497.6197.4497.53
    • Table 5. Recognition results of four models after feature selection

      View table

      Table 5. Recognition results of four models after feature selection

      ModelLabelP /%R /%F1 /%A /%
      SVM172.2882.0776.8783.07
      286.0690.3288.14
      486.8294.1490.33
      KNN188.3492.0390.1595.04
      295.8199.4197.58
      498.1798.3598.26
      DT189.1480.0884.3790.01
      292.4692.0992.28
      495.4191.3993.36
      RF196.6190.8493.6396.5
      296.7198.6297.65
      498.3597.9998.17
    • Table 6. Comparison of recognition time

      View table

      Table 6. Comparison of recognition time

      ModelFeature extraction time /sModel recognition time /msAverage time /ms
      OriginalProposedOriginalProposedOriginalProposed
      SVM252.35191.466920.002670.0084.0762.95
      KNN252.35182.175130.001092.0083.0059.69
      DT252.35217.646.054.9881.8370.57
      RF252.35203.5842.1137.9081.8266.01
    • Table 7. Comparison of average recognition accuracy A with different feature selection methods

      View table

      Table 7. Comparison of average recognition accuracy A with different feature selection methods

      ModelA /%
      Proposed methodFisher score21Mutual information23
      SVM83.0782.7481.82
      KNN95.0494.6394.38
      DT90.0188.3487.47
      RF96.5096.2696.15
    Tools

    Get Citation

    Copy Citation Text

    Min Sun, Nian Fang. Interpretable Feature Selection Method for Optical-Fiber Disturbance Signal Recognition[J]. Acta Optica Sinica, 2024, 44(21): 2106007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: May. 30, 2024

    Accepted: Jul. 15, 2024

    Published Online: Nov. 20, 2024

    The Author Email: Fang Nian (nfang@shu.edu.cn)

    DOI:10.3788/AOS241101

    CSTR:32393.14.AOS241101

    Topics