Chinese Journal of Lasers, Volume. 41, Issue 1, 116002(2014)
Development of a Virtual Impactor for Submicron Particles
[1] [1] David S Ensor. Aerosol Science and Technology: History and Reviews[M]. Minnesota, USA: Research Triangle Institute Press, 2011. 509-525.
[2] [2] Wathes Christopher M, Cox C Barry. Bioaerosols Handbook[M]. Chelsea: Lewis Publishers, 1995. 11-14.
[3] [3] Richard DeFreez. LIF bio-aerosol threat triggers: then and now[C]. SPIE, 2009, 7484: 74840H.
[5] [5] Cai Shuyao, Zhang Pei, Zhu Linglin, et al.. Research on detection technology of bio-aerosols with tryptophan intrinsic fluorescence measurement[J]. Acta Optica Sinica, 2012, 32(5): 0512009.
[6] [6] Virgil A Marple, Chung M Chien. Virtual impactors: a theoretical study[J]. Environmental Science & Technology, 1980, 14(8): 976-984.
[7] [7] M C Kim, K W Lee. Design modification of virtual impactor for enhancing particle concentration performance[J]. Aerosol Science & Technology, 2000, 32(3): 233-242.
[8] [8] J Keskinen, K Janka. Virtual impactor as an accessory to optical particle counters[J]. Aerosol Science & Technology, 1987, 6(1): 79-83.
[9] [9] Virgil A Marple, Benjamin Y H Liu, Robert M Burton. High-volume impactor for sampling fine and coarse particles[J]. Journal of the Air & Waste Management Association, 1990, 40(5): 762-767.
[10] [10] Liang Xiaojun. Design on the Low Concentration Bioaerosol Concentrator and Its Verification of Capacity[D]. Beijing: Chinese Center for Disease Control and Prevention, 2011. 25-26.
[12] [12] Ronald G Pinnick, Steven C Hill, Stanley Niles, et al.. Real-time measurement of fluorescence spectra from single airborne biological particles[J]. Field Analytical Chemistry and Technology, 1999, 3(4-5): 221-239.
[13] [13] Richard DeFreez, Ezra Merrill, Sam Albanna, et al.. Design considerations and performance characteristics of AirSentinel, a new UV-LIF bio-aerosol threat detection trigger[C]. SPIE, 2005, 5990: 59900O.
[14] [14] Jung Hyeun Kim, George W Mulholland, Scott R Kukuck, et al.. Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (Nano-DMA) for Knudsen number from 0.5 to 83[J]. Journal of Research of the National Institute of Standards and Technology, 2005, 110(1): 31-54.
[15] [15] Zhou Deqing. A Course of the Science of Microbiology[M]. Beijing: Higher Education Press, 2002. 9-10.
[16] [16] Billy W Loo, Christopher P Cork. Development of high efficiency virtual impactors[J]. Aerosol Science & Technology, 1988, 9(3): 167-176
[17] [17] He Cunxing, Zhang Tiehua. Hydraulic and Pneumatic Transmission[M]. Wuhan: Huazhong University of Science and Technology Press, 1998. 244-245.
[18] [18] Sun Yunqiang, Xi Fengjie, Xu Xiaojun, et al.. Model for the optical field and fluent field coupling effects[J]. Chinese J Lasers, 2011, 38(2): 0202013.
[21] [21] Zhu Hongjun, Lin YuanHua, Xie Longhan. Fluent 12 Fluid Analysis and Engineering Simulation[M]. Beijing: Tsinghua University Press, 2011. 187.
Get Citation
Copy Citation Text
Zhang Pei, Zhao Yongkai, Yang Wei, Huang Huijie. Development of a Virtual Impactor for Submicron Particles[J]. Chinese Journal of Lasers, 2014, 41(1): 116002
Category: Optical Design and Fabrication
Received: Aug. 16, 2013
Accepted: --
Published Online: Dec. 24, 2013
The Author Email: Pei Zhang (zhp19860626@163.com)