Photonics Research, Volume. 10, Issue 6, 1430(2022)
Experimental quantum simulation of dynamic localization on curved photonic lattices Editors' Pick
Fig. 1. The schematic of dynamic localization in a photonic lattice. (a) The suppressed evolution wave packet for electrons in an AC electric field and an analog of suppressed evolution wave packet for photons in a sinusoidally curved photonic lattice. Cross section of (b) a one-dimensional waveguide array and (c) a two-dimensional hexagonal waveguide array. The detailed schematic for the part inside the white rectangles in (b) and (c) is shown in (d) and (e), respectively, where each waveguide is modulated into sinusoidal bending on the
Fig. 2. Photon evolution and transport properties for one-dimensional arrays. Probability distributions for (a)–(c) straight and (d)–(f) sinusoidally curved arrays. Each scenario has an experimental pattern shown in the upper row and a theoretical pattern using the quantum walk approach shown in the row below. The propagation lengths are 1.5 cm for (a) and (d), 3 cm for (b) and (e), and 4.5 cm for (c) and (f). (g) The variance against propagation length from the experimental pattern, theoretical quantum walk approach, and theoretical dynamic localization approach. Details about error bars on experimental results are given in Appendix
Fig. 3. Photon evolution and transport properties for hexagonal two-dimensional arrays. (a) Schematic of the cross section of a hexagonal two-dimensional array with the effective anisotropic coupling coefficients and effective sinusoidal amplitude along different directions marked in the figure. Probability distributions for (b) straight and (c) sinusoidally curved hexagonal two-dimensional waveguide arrays. The propagation lengths for both (b) and (c) are 2.5 cm. (d) The variance against propagation length from the experimental pattern and theoretical quantum walk approach. Details about error bars on experimental results are given in Appendix
Fig. 4. The nearly complete dynamic localization in integrated photonics. (a) Photons spread out in the 1.2-cm-long straight array, whereas, localizing in the injection site in the curved array of the same length. The straight and curved arrays have effective coupling coefficients of 0.15 and
Fig. 5. Different paths for evolution in the horizontal direction in a hexagonal two-dimensional array. The evolution Paths I–III are shown by arrows in orange, green, and blue, respectively.
Get Citation
Copy Citation Text
Hao Tang, Tian-Yu Wang, Zi-Yu Shi, Zhen Feng, Yao Wang, Xiao-Wen Shang, Jun Gao, Zhi-Qiang Jiao, Zhan-Ming Li, Yi-Jun Chang, Wen-Hao Zhou, Yong-Heng Lu, Yi-Lin Yang, Ruo-Jing Ren, Lu-Feng Qiao, Xian-Min Jin, "Experimental quantum simulation of dynamic localization on curved photonic lattices," Photonics Res. 10, 1430 (2022)
Category: Quantum Optics
Received: Jan. 13, 2022
Accepted: Mar. 22, 2022
Published Online: May. 20, 2022
The Author Email: Xian-Min Jin (xianmin.jin@sjtu.edu.cn)