Laser & Optoelectronics Progress, Volume. 59, Issue 12, 1215004(2022)

Tracking Algorithm Based on Video Person Reidentification and Spatiotemporal Feature Fusion

Guancheng Hui1, Kaifang Li1, Ming Xin3, and Miaohui Zhang1,2、*
Author Affiliations
  • 1School of Artificial Intelligence, Henan University, Kaifeng 475004, Henan , China
  • 2Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, Henan , China
  • 3School of Computer Science and Engineering, Beihang University, Beijing 100191, China
  • show less
    Figures & Tables(13)
    Joint network architecture
    Encoder-decoder network
    Detection branch outputing the heat map, center offset, and box size to determine the information of the bounding box and the re-identify branch outputing the classification probability of each ID
    Tracking result comparison between the MSC network and the original ResNet-34 network. (a) Detection result of the original ResNet-34 network; (b) detection result of the MSC network; (c) structure diagram of the original ResNet-34 network; (d) structure diagram of the MSC network
    Candidate box selection based on unified scoring mechanism
    Output results of the proposed method on MOT17 test set
    Reasoning time of MSC network and ResNet-34 network on three data sets
    • Table 1. Experimental platform parameters

      View table

      Table 1. Experimental platform parameters

      ConfigurationParameter
      Operating systemUbuntu 16.04
      RAM(random processing unit)128 G
      CPU(central processing unit)2.50 GHz E5-2678 v3
      GPU(graphics processing unit)Tesla T4 16 G
      Software platformPytorch 1.1 Python 3.6
    • Table 2. Recognition feature dimensions evaluated on the MOT17 validation set

      View table

      Table 2. Recognition feature dimensions evaluated on the MOT17 validation set

      DimensionMOTAIDF1IDsTime /s
      51268.573.731224.1
      25668.572.833726.1
      12869.172.529926.6
      6469.272.328326.8
    • Table 3. Evaluation of the three elements associated with the evaluation data on the MOT17 validation set

      View table

      Table 3. Evaluation of the three elements associated with the evaluation data on the MOT17 validation set

      Box IoUre-ID FeaturesKalman FilterMOTAIDF1IDs
      67.867.2648
      68.170.3435
      68.971.8342
      69.172.8299
    • Table 4. Comparison between MSC network and ResNet-34 network on MOT17 validation set

      View table

      Table 4. Comparison between MSC network and ResNet-34 network on MOT17 validation set

      NetworkMOTAIDF1IDs
      ResNet-3463.667.2435
      MSC69.172.8299
    • Table 5. Result using different datasets for training

      View table

      Table 5. Result using different datasets for training

      DatasetNumber of imagesNumber of boxesNumber of identitiesMOTAIDF1IDs
      MOT175×103112×1030.5×10369.172.8299
      MIX54×103270×1038.7×10373.780.1209
    • Table 6. Comparison of results of different methods

      View table

      Table 6. Comparison of results of different methods

      DatasetTrackerMOTAIDF1MT /%ML /%IDsTime /s
      MOT16EAMTT2352.553.319.934.9910<5.5
      SORTwHPD162459.853.825.422.71423<8.6
      DeepSORT_22561.462.232.818.2781<6.4
      RAR16wVGG2663.063.839.922.1482<1.4
      VMaxx2762.649.232.721.11389<3.9
      TubeTK2864.059.433.519.411171.0
      JDE364.455.835.420.0154418.5
      TAP2964.873.538.521.6571<8.0
      CNNMTT3065.262.232.421.3946<5.3
      POI3166.165.134.020.8805<5.0
      CTackerVI3267.657.232.923.118976.8
      Proposed method74.780.238.1021.4721013.3
      MOT17SST3352.449.521.430.78431<3.96
      TubeTK2863.058.631.219.941373.0
      CTackerVI3266.657.432.224.255296.8
      CenterTack3467.359.934.624.6289822.0
      Proposed method73.780.136.9922.8920912.70
      MOT20ArTIST-T3553.651.031.628.11531
      MPNTrack3657.659.138.222.51210
      Proposed method66.472.846.8714.84140312.0
    Tools

    Get Citation

    Copy Citation Text

    Guancheng Hui, Kaifang Li, Ming Xin, Miaohui Zhang. Tracking Algorithm Based on Video Person Reidentification and Spatiotemporal Feature Fusion[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1215004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 16, 2021

    Accepted: Jun. 11, 2021

    Published Online: May. 23, 2022

    The Author Email: Miaohui Zhang (zhmh@henu.edu.cn)

    DOI:10.3788/LOP202259.1215004

    Topics