Laser & Optoelectronics Progress, Volume. 57, Issue 22, 221506(2020)

Face Recognition Based on Lightweight Recursive Residual Neural Network

Xiuling Zhang1,2、*, Kaixuan Zhou1, Qijun Wei1, and Jinxiang Li1
Author Affiliations
  • 1Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao, Hebei 0 66004, China
  • 2National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao, Hebei 0 66004, China
  • show less
    Figures & Tables(10)
    Residual model 1
    Residual model 2
    Gradient weighted global average pooling process
    Schematic of pretreatment process
    Some test data pairs. (a) Same face images; (b) different face images
    Experimental training curve of M4 model
    Test curves of M4 model
    • Table 1. Network configuration details

      View table

      Table 1. Network configuration details

      InputOperatorECns
      112×112×3Conv 3×3-6412
      56×56×64DW Conv 3×3-6411
      56×56×64Bottleneck3/26452
      28×28×64Bottleneck312812
      14×14×128Bottleneck3/212861
      14×14×128Bottleneck312812
      7×7×128Bottleneck3/212821
      7×7×128Conv 1×1-51211
      7×7×512Linear WGAP-51211
      1×1×512Linear Conv 1×1-12811
    • Table 2. Different model accuracy and parameter ratio

      View table

      Table 2. Different model accuracy and parameter ratio

      NetworkLFW/%AgeDB/%CFP-FP/%FLOPSpeed/msModel size/MBParameter number /106
      ShiftFaceNet[16]96.00----3.10.780
      Light CNN-29[17]99.33----50.04.000
      LMobileNetE[13]99.2595.1290.683.17×10824112.03.200
      MobileFacenet[9]99.2995.5891.174.33×108394.00.990
      M199.3795.9891.603.84×108343.90.818
      M299.2094.6890.423.77×108313.90.795
      M499.3796.0892.023.84×108343.90.816
      M599.2294.7290.533.77×108313.90.793
    • Table 3. Comparison of model recognition accuracy unit: %

      View table

      Table 3. Comparison of model recognition accuracy unit: %

      NetworkLFWAgeDBCFP-FP
      SE-LResNet18[13]99.5396.1893.42
      SE-LM6-1899.6296.9594.34
      SE-LM7-1899.6796.9294.23
    Tools

    Get Citation

    Copy Citation Text

    Xiuling Zhang, Kaixuan Zhou, Qijun Wei, Jinxiang Li. Face Recognition Based on Lightweight Recursive Residual Neural Network[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221506

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Feb. 20, 2020

    Accepted: Apr. 27, 2020

    Published Online: Nov. 4, 2020

    The Author Email: Xiuling Zhang (zxlysu@ysu.edu.cn)

    DOI:10.3788/LOP57.221506

    Topics