Infrared and Laser Engineering, Volume. 51, Issue 7, 20210654(2022)
High-conversion-efficiency continuous-wave near-infrared singly resonant optical parametric oscillator
[1] Gibson G M, Dunn M H, Padgett M J. Application of a continuously tunable, cw optical parametric oscillator for high-resolution spectroscopy[J]. Optics Letters, 23, 40-42(1998).
[2] Romanovskii O A, Sadovnikov S A, Kharchenko O V, et al. Development of near/mid IR differential absorption OPO lidar system for sensing of atmospheric gases[J]. Optics & Laser Technology, 116, 43-47(2019).
[3] Bai X, He Y, Yu D, et al. Miniaturized mid-infrared MgO: PPLN optical parametric oscillator with high beam quality[J]. Infrared and Laser Engineering, 49, 20190512(2020).
[4] Lombardini A, Berto P, Duboisset J, et al. Background-suppressed SRS fingerprint imaging with a fully integrated system using a single optical parametric oscillator[J]. Optics Express, 28, 14490-14502(2020).
[5] Won M, Li M, Kim H S, et al. Visible to mid IR: A library of multispectral diagnostic imaging[J]. Coordination Chemistry Reviews, 426, 213608(2021).
[6] Zhang J, Ma J, Lu T, et al. Compact wavelength tunable output around 440 nm pulsed laser for oceanic lidar application[J]. Optics Communications, 485, 126706(2021).
[7] Ding X, Zhang S M, Ma H M, et al. Continuous-wave mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate[J]. Chinese Physics B, 17, 0211(2008).
[8] Ding X, Sheng Q, Chen N, et al. High efficiency continuous-wave tunable signal output of an intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate[J]. Chinese Physics B, 18, 4314-4318(2009).
[9] Ding X, Shang C, Sheng Q, et al. Continuous-wave tunable intra-cavity single resonance optical parametric oscillator under 880 nm in-band pumping and the inverse conversion[J]. Chinese Journal of Lasers, 40, 0602008(2013).
[10] Yu J, Zhang J X, Sheng Q, et al. All-fiber CW optical parametric oscillator tuned from 1642.5 to 1655.4 nm by a low-loss SMS filter[J]. Results in Physics, 17, 103136(2020).
[11] Wang K, Gao M Y, Yu S H, et al. A compact and high efficiency intracavity OPO based on periodically poled lithium niobate[J]. Scientific Reports, 11, 5079(2021).
[12] Samanta G K, Fayaz G R, Sun Z, et al. High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO: sPPLT[J]. Optics Letters, 32, 400-402(2007).
[13] Samanta G K, Fayaz G R, Ebrahim-Zadeh M. 1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO: sPPLT[J]. Optics Letters, 32, 2623-2625(2007).
[14] Kumar S C, Ebrahim-Zadeh M. High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO: sPPLT[J]. Optics Letters, 36, 2578-2580(2011).
[15] Devi K, Ebrahim-Zadeh M. Room-temperature, rapidly tunable, green-pumped continuous-wave optical parametric oscillator[J]. Optics Letters, 42, 2635-2638(2017).
[16] Lim H H, Kurimura S, Katagai T, et al. Temperature-dependent sellmeier equation for refractive index of 1.0 mol % Mg-doped stoichiometric lithium tantalate[J]. Japanese Journal of Applied Physics, 52, 032601(2013).
Get Citation
Copy Citation Text
Wenming Yao, Lihua Deng, Yubing Tian, Aolei Chang, Peng Wang, Jiansheng Chen, Huiming Tan, Jing Gao. High-conversion-efficiency continuous-wave near-infrared singly resonant optical parametric oscillator[J]. Infrared and Laser Engineering, 2022, 51(7): 20210654
Category: Lasers & Laser optics
Received: Jan. 10, 2022
Accepted: --
Published Online: Dec. 20, 2022
The Author Email: