Acta Photonica Sinica, Volume. 52, Issue 10, 1052408(2023)

Spoof Plasmonic On-chip Sensor Based on Electromagnetically Induced Transparency(Invited)

Xiaoqiang SU1, Yucong HUANG1, Shaoxian LI2, Ge SONG1, and Quan XU3、*
Author Affiliations
  • 1College of Physics and Electronic Science,Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials,Shanxi Datong University,Datong 037009,China
  • 2MOE Engineering Research Center of Smart Microsensors and Microsystems,School of Electronics and Information,Hangzhou Dianzi University,Hangzhou 310018,China
  • 3Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering,Tianjin University,Tianjin 300072,China
  • show less
    References(25)

    [1] ZHANG J, ZHANG L, XU W. Surface plasmon polaritons: physics and applications[J]. Journal of Physics D: Applied Physics, 45, 113001(2012).

    [2] PITARKE J M, SILKIN V M, CHULKOV E V et al. Theory of surface plasmons and surface-plasmon polaritons[J]. Reports on Progress in Physics, 70, 1-87(2006).

    [3] ZHANG X Q, XU Q, XIA L B et al. Terahertz surface plasmonic waves: a review[J]. Advanced Photonics, 2, 014001(2020).

    [4] GARCIA-VIDAL F J, FERNANDEZ-DOMINGUEZ A I, MARTIN-MORENO L et al. Spoof surface plasmon photonics[J]. Reviews of Modern Physics, 94, 025004(2022).

    [5] CHENG Z W, WANG M, YOU Z H et al. Spoof surface plasmonics: principle, design, and applications[J]. Journal of Physics: Condensed Matter, 34, 263002(2022).

    [6] ZHANG J, ZHANG H C, GAO X X et al. Integrated spoof plasmonic circuits[J]. Science Bulletin, 64, 843-855(2019).

    [7] XU Q, LANG Y H, JIANG X et al. Meta-optics inspired surface plasmon devices[J]. Photonics Insights, 2, R02(2023).

    [8] SU X Q, XU Q, LU Y C et al. Gradient index devices for terahertz spoof surface plasmon polaritons[J]. ACS Photonics, 7, 3305-3312(2020).

    [9] ZHANG X, CUI W Y, LEI Y et al. Spoof localized surface plasmons for sensing applications[J]. Advanced Materials Technologies, 6, 2000863(2021).

    [10] ZHANG X, CUI T J. Contactless glucose sensing at sub‐micromole level using a deep‐subwavelength decimeter‐wave plasmonic resonator[J]. Laser & Photonics Reviews, 16, 2200221(2022).

    [11] ANNAMDAS V G M, SOH C K. Contactless load monitoring in near-field with surface localized spoof plasmons-a new breed of metamaterials for health of engineering structures[J]. Sensors and Actuators A: Physical, 244, 156-165(2016).

    [12] SHAO R L, ZHOU Y J, YANG L. Quarter-mode spoof plasmonic resonator for a microfluidic chemical sensor[J]. Applied Optics, 57, 8472-8477(2018).

    [13] GAO F, GAO Z, ZHANG Y et al. Vertical transport of subwavelength localized surface electromagnetic modes[J]. Laser & Photonics Reviews, 9, 571-576(2015).

    [14] LIAO Z, PAN B C, SHEN X et al. Multiple Fano resonances in spoof localized surface plasmons[J]. Optics Express, 22, 15710-15717(2014).

    [15] ZHOU J, CHEN L, SUN Q et al. Terahertz on-chip sensing by exciting higher radial order spoof localized surface plasmons[J]. Applied Physics Express, 13, 012014(2019).

    [16] CAI J, ZHOU Y J, ZHANG Y et al. Gain-assisted ultra-high-Q spoof plasmonic resonator for the sensing of polar liquids[J]. Optics Express, 26, 25460-25470(2018).

    [17] PAPASIMAKIS N, FEDOTOV V A, ZHELUDEV N I et al. Metamaterial analog of electromagnetically induced transparency[J]. Physical Review Letters, 101, 253903(2008).

    [18] LIU N, WEISS T, MESCH M et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Letters, 10, 1103-1107(2010).

    [19] GU J Q, SINGH R, LIU X et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 3, 1151(2012).

    [20] LIU N, LANGGUTH L, WEISS T et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nature Materials, 8, 758-762(2009).

    [21] XU Z, WANG Y, LIU S et al. Metamaterials with analogous electromagnetically induced transparency and related sensor designs-a review[J]. IEEE Sensors Journal, 23, 6378-6396(2023).

    [22] HUANG P, YAO Y, ZHONG W et al. Optical sensing based on classical analogy of double electromagnetically induced transparencies[J]. Results in Physics, 39, 105732(2022).

    [23] SUN Zhanshuo, WANG Xin, WANG Junlin et al. Sensing and slow light properties of dual-band terahertz metamaterials based on electromagnetically induced transparency-like[J]. Acta Physica Sinica, 71, 138101(2022).

    [24] MA H F, SHEN X, CHENG Q et al. Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons[J]. Laser & Photonics Reviews, 8, 146-151(2014).

    [25] SU X Q, DONG L J, WEN H L et al. Cascaded plasmon-induced transparency in spoof surface plasmon polariton waveguide[J]. Results in Physics, 43, 106044(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoqiang SU, Yucong HUANG, Shaoxian LI, Ge SONG, Quan XU. Spoof Plasmonic On-chip Sensor Based on Electromagnetically Induced Transparency(Invited)[J]. Acta Photonica Sinica, 2023, 52(10): 1052408

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 30, 2023

    Accepted: Aug. 22, 2023

    Published Online: Dec. 5, 2023

    The Author Email: Quan XU (quanxu@tju.edu.cn)

    DOI:10.3788/gzxb20235210.1052408

    Topics