Chinese Journal of Lasers, Volume. 42, Issue 2, 213001(2015)

Simulation of Water Vapor Multiple Wavelengths Lidar Echo Signals and Error Analysis

Li Ting1、*, Chen Siying1, Zhang Yinchao1, Guo Pan1, Chen He1, and Gao Long2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(14)

    [1] [1] Committee on Global Change Research and Board on Sustainable Development, National Research Council. Global Environmental Change: Research Pathways for the Next Decade[M]. Washington, D.C.: National Academy Press, 1998.

    [2] [2] Ji Chengli, Tao Zongming, Hu Shunxing, et al.. Cirrus measurement using three-wavelength lidar in Hefei[J]. Acta Optica Sinica, 2014, 34(4): 0401001.

    [3] [3] W Staehr, W Lahmann, C Weitkamp. Range-resolved differential absorption lidar: Optimization of range and sensitivity[J]. Appl Opt, 1985, 24(13): 1950-1955.

    [4] [4] G Ehret, A Fix, M Wirth, et al.. WALES: Water vapour lidar experiment in space[C]. 54th International Conference on Space Optics, 2004, 554: 25-32.

    [5] [5] Yu Zhenzhen, Hou Xia, Zhou Cuiyun. Progress and current state of space- borne laser altimetry[J]. Laser & Optoelectronics Progress, 2013, 50(2): 020006.

    [6] [6] Noaa U S, Force U S A. US Standard Atmosphere[R]. NOAA-S/T, 1976.

    [7] [7] Fan Guangqiang. Dual- channel polarization lidar monitoring of sandstorm and its transportation research[J]. Chinese J Lasers, 2011, 38(s1): s114006.

    [9] [9] Sun Jingqun. Laser Atmospheric Sounding [M]. Beijing: Science Press, 1986. 242-243.

    [10] [10] Rothman L S, Gordon I E, Babikov Y, et al.. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4-50.

    [11] [11] Wulfmeyer V, Walther C. Future performance of ground- based and airborne water- vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system[J]. Appl Opt, 2001, 40(30): 5321-5336.

    [12] [12] Gao Po, Hu Yihua, Zhao Nanxiang, et al.. Accuracy analysis of all-fiber differential absorption lidar for atmospheric component[J]. Acta Optica Sinica, 2014, 34(3): 0301003.

    [13] [13] Ismail S, Browell E V. Airborne and spaceborne lidar measurements of water vapor profiles: A sensitivity analysis[J]. Appl Opt, 1989, 28(17): 3603-3615.

    [14] [14] Bosenberg J. Ground-based differential absorption lidar for water-vapor and temperature profiling: Methodology[J]. Appl Opt, 1998, 37(18): 3845-3860.

    CLP Journals

    [1] Shang Zhen, Xie Chenbo, Zhong Zhiqing, Wang Bangxin, Wang Zhenzhu, Zhao Ming, Tan Min, Liu Dong, Wang Yingjian. Raman lidar for measurement of tropospheric water vapor[J]. Infrared and Laser Engineering, 2016, 45(12): 1211003

    [2] Xiang Yan, Ye Qinghao, Liu Jianguo, Zhang Tianshu, Fan Guangqiang, Zhou Peisong, Lü Lihui, Liu Yang. Retrieve of Planetary Boundary Layer Height Based on Image Edge Detection[J]. Chinese Journal of Lasers, 2016, 43(7): 704003

    Tools

    Get Citation

    Copy Citation Text

    Li Ting, Chen Siying, Zhang Yinchao, Guo Pan, Chen He, Gao Long. Simulation of Water Vapor Multiple Wavelengths Lidar Echo Signals and Error Analysis[J]. Chinese Journal of Lasers, 2015, 42(2): 213001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 7, 2014

    Accepted: --

    Published Online: Jan. 19, 2015

    The Author Email: Li Ting (tingli_1990@163.com)

    DOI:10.3788/cjl201542.0213001

    Topics