The Journal of Light Scattering, Volume. 36, Issue 3, 305(2024)

Principles and typical applications of Raman spectrometers

JIANG Jie, LI Conghui, YAO Senhao, SHEN Shen, RAN Na, and ZHANG Jie*
Author Affiliations
  • Key Laboratory of Optoelectronic Technology and System, Education Ministry of China, Chongqing University, Chongqing, 400044, China
  • show less
    References(74)

    [1] [1] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.

    [2] [2] Na H K, Ki J, Le M U, et al. Analyte-Induced desert rose-like Ag nanostructures for surface-enhanced Raman scattering-based biomolecule detection and imaging[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 58393-58400.

    [3] [3] Li H, Hu W, Hassan M M, et al. A facile and sensitive SERS-based biosensor for colormetric detection of acetamiprid in green tea based on unmodified gold nanoparticles[J]. Journal of Food Measurement and Characterization, 2019, 13: 259-268.

    [4] [4] Krafft C, Schmitt M, Schie I W, et al. Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches[J]. Angewandte Chemie International Edition, 2017, 56(16): 4392-4430.

    [5] [5] Lima C, Muhamadali H, Goodacre R. The role of Raman spectroscopy within quantitative metabolomics[J]. Annual Review of Analytical Chemistry, 2021, 14: 323-345.

    [6] [6] Yaseen T, Pu H, Sun D W. Effects of ions on core-shell bimetallic Au@AgNPs for rapid detection of phosalone residues in peach by SERS[J]. Food Analytical Methods, 2019, 12(9): 2094-2105.

    [7] [7] Buzatu A, Damian G, Buzgar N, et al. Structural key features of bismuth and Sb-As sulfosalts from hydrothermal deposits-micro-Raman spectrometry[J]. Vibrational Spectroscopy2017, 89: 49-56.

    [8] [8] González-García D, Giordano D, Russell J K, et al. A Raman spectroscopic tool to estimate chemical composition of natural volcanic glasses[J]. Chemical Geology, 2020, 556: 119819.

    [9] [9] Kim Y, Caumon M C, Barres O, et al. Identification and composition of carbonate minerals of the calcite structure by Raman and infrared spectroscopies using portable devices[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 261: 119980.

    [10] [10] Ni Z, Wang Y, Yu T, et al. Raman spectroscopy and imaging of graphene[J]. Nano Research,2008, 1: 273-291.

    [11] [11] Bokobza L, Zhang J. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites[J]. Express Polymer Letters,2012, 6(7): 601-608.

    [12] [12] Ribeiro H B, Pimenta M A, De Matos C J, et al. Unusual angular dependence of the Raman response in black phosphorus[J]. ACS Nano, 2015, 9(4): 4270-4276.

    [13] [13] Farber C, Sanchez L, Kurouski D. Confirmatory non-invasive and non-destructive identification of poison ivy using a hand-held Raman spectrometer[J]. RSC Advances, 2020, 10(36): 21530-21534.

    [14] [14] Wang H, Liu M, Zhang Y, et al. Rapid Detection of Aspergillus flavus and quantitative determination of aflatoxin B1 in grain crops using a portable Raman spectrometer combined with colloidal Au nanoparticles[J]. Molecules,2022, 27(16): 5280.

    [15] [15] Sieburg A, Jochum T, Trumbore S E, et al. Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth's critical zone[J]. Analyst, 2017, 142(18): 3360-3369.

    [16] [16] Cabernard L, Rocher L, Lorenz C, et al. Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2018, 52(22): 13279-13288.

    [17] [17] Kostenko M, Petrov D, Popova M, et al. Detection of methane in the air using a laser Raman spectrometer[C]. XV international conference on pulsed lasers and laser applications, 2021: 454-458.

    [18] [18] Terry L R, Sanders S, Potoff R H, et al. Applications of surface-enhanced Raman spectroscopy in environmental detection[J]. Analytical Science Advances, 2022, 3(3-4): 113-145.

    [19] [19] Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the American Chemical Society, 1977, 99(15): 5215-5217.

    [20] [20] Wang X G, Wang J, Li J F, et al. Silver loaded anodic aluminum oxide defective photonic crystals and their application for surface enhanced Raman scattering[J]. Optical Materials, 2020, 105: 109982.

    [21] [21] Raman C V. A Change of wave-length in light scattering[J]. Nature, 1928, 121(3051): 619-619.

    [22] [22] Smekal A J N. Zur quantentheorie der dispersion[J]. Naturwissenschaften, 1923, 11(43): 873-875.

    [23] [23] Adar F, Delhaye M, DaSilva E. Evolution of instrumentation for detection of the Raman effect as driven by available technologies and by developing applications[J]. Journal of Chemical Education, 2007, 84(1): 50.

    [24] [24] Smith H M, Turner A F. Vacuum deposited thin films using a ruby laser[J]. Applied Optics, 1965, 4(1): 147-148.

    [25] [25] Khan S, Ullah Rahat, Khan A, et al. Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM)[J]. Biomedical Optics Express, 2016, 7(6): 2249-2256.

    [26] [26] Meng Z K, Cheng S, Georgi I P, et al. Raman spectroscopy using time-correlated photon-counting detection[J]. In Advanced Biomedical and Clinical Diagnostic Systems XI, 2013, 8572(40): 264-269.

    [27] [27] Saletnik A, Saletnik B, Puchalski C J M. Overview of popular techniques of Raman spectroscopy and their potential in the study of plant tissues[J]. Molecules, 2021, 26(6): 1537.

    [28] [28] Hirschfeld T, Chase B. FT-Raman spectroscopy: development and justification[J]. Applied Spectrosc, 1986, 40(2): 133-137.

    [29] [29] Jimenez-Sandoval S. Micro-Raman spectroscopy: a powerful technique for materials research[J]. Microelectronics Journal, 2000, 31(6): 419-427.

    [30] [30] Mu T, Li S, Feng H, et al. High-sensitive smartphone-based Raman system based on cloud network architecture[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 25(1): 1-6.

    [31] [31] Sorak D, Herberholz L, Lwascek S, et al. New developments and applications of handheld Raman, mid-infrared, and near-infrared spectrometers[J]. Applied Spectroscopy Reviews, 2021, 47(2): 83-115.

    [34] [34] Yue X, Tan Y, Fan W Z, et al. Raman spectroscopic analysis of paddy rice infected by three pests and diseases common in Northeast Asia[J]. In Journal of Physics: Conference Series, 2019, 1324(1): 012050.

    [35] [35] Liu X L, Liu H N, Wu J B, et al. Filter-based ultralow-frequency Raman system down to 2 cm-1 for fast Brillouin spectroscopy measurement[J]. Review of Scientific Instruments, 2017, 88(5), 053110.

    [36] [36] Luo W X, Liu X L, Chen X, et al. A tunable Raman system based on ultrafast laser for Raman excitation profile measurement[J]. Review of Scientific Instruments, 2021, 92(12): 123904.

    [37] [37] Wang Z K, Sha H Y, Zhu Y, et al. A Compact Device of Optical Fiber Taper Coupled Monolayer Silver Nanoparticles for Raman Enhancement[J]. Journal of Lightwave Technology, 2024, 42(2): 865-874.

    [38] [38] Huang B, Yang K, Zhu Y, et al. Microfluidic integrated D-shaped optical fiber SERS probe with high sensitivity and ability of multi-molecule detection[J]. Optical Express, 2023, 31(17): 27305-27312.

    [39] [39] Wang Z K, Yu Z N, Wang N, et al. Raman enhancement mechanism and experiments of cavity-enhanced AgNP decorated tapered fiber sensor[J]. Optics Letters, 2021, 46(17): 4300-4303.

    [40] [40] Maity B K, Das A, Dutta S, et al. Design and construction of a line-confocal Raman microscope for sensitive molecules[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88(3): 431-436.

    [42] [42] Kita D M, Miranda B, Favela D, et al. High-performance and scalable on-chip digital Fourier transform spectroscopy[J]. Nature communications, 2018, 9(1): 4405.

    [44] [44] Miles J E, Acosta-Maeda T E, Michael A. S, et al. One-mirror, one-grating spatial heterodyne spectrometer for remote-sensing Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2020, 51(9): 1794-1801.

    [45] [45] Qiu J, Qi X D, Li X T, et al. Raman measurements using a field-widened spatial heterodyne Raman spectrometer[J]. Journal of Raman Spectroscopy, 2019, 50(10): 1602-1613.

    [46] [46] Li F, Song N, Li X, et al. Detection of microplastics via a confocal-microscope spatial-heterodyne Raman spectrometer with echelle gratings[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 313: 124099.

    [47] [47] Lyu R, Wang Z, Neogi A. Raman spectroscopy by a detector-noise-limited birefringent wedge-based Fourier transform spectrometer[J]. Optics and Lasers in Engineering, 2024, 175: 108041.

    [48] [48] Li H, Gu Y, Li G, et al. The spectral background problem of portable fiber Raman instruments and a solution for the on-site detection of extremely weak signals[J]. Review of Scientific Instruments,2019, 90(2): 023101.

    [51] [51] Ilchenko O, Pilhun Y, Kutsyk A, et al. Optics miniaturization strategy for demanding Raman spectroscopy applications[J]. Nature Communications, 2024, 15(1): 3049.

    [52] [52] Shen X, Li C, Zhao W, et al. Ultra-low-crosstalk silicon arrayed-waveguide grating (De) multiplexer with 1.6-nm channel spacing[J]. Laser & Photonics Reviews, 2024, 18(1): 2300617.

    [53] [53] Zhang L, Zhang M, Chen T, et al. Ultrahigh-resolution on-chip spectrometer with silicon photonic resonators[J]. Opto-Electronic Advances, 2022, 5(7): 210100-210100.

    [54] [54] Zheng N S, Zou J, Cai H, et al. Microring resonator-assited Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution[J]. Nature Communications,2019, 10(1): 1-8.

    [55] [55] Dinh T T D, González-Andrade D, Montesinos-Ballester M, et al. Silicon photonic on-chip spatial heterodyne Fourier transform spectrometer exploiting the Jacquinot's advantage[J]. Optics Letters,2021,46(6): 1341-1344.

    [56] [56] Wang H, LiQ, Shi W. On-chip polarization-insensitive Fourier transform spectrometer[J]. Optics Letters,2020,45(6): 1479-1482.

    [57] [57] Qiao Q, Liu X, Ren Z, et al. MEMS-enabled on-chip computational mid-infrared spectrometer using silicon photonics[J]. ACS Photonics, 2022, 9(7): 2367-2377.

    [58] [58] Chen X, Gan X, Zhu Y, et al. On-chip micro-ring resonator array spectrum detection system based on convex optimization algorithm[J]. Nanophotonics, 2023, 12(4): 715-724.

    [59] [59] Kim Y, Caumon M C, Barres O, et al. Identification and composition of carbonate minerals of the calcite structure by Raman and infrared spectroscopies using portable devices[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 261: 119980.

    [60] [60] Zhang X L, Wang N, Liu R J, et al. SERS and the photo-catalytic performance of Ag/TiO2/graphene composites[J]. Optical Materials Express, 2018, 8(4): 704-717.

    [61] [61] Omar J, Boix A, Ulberth F. Raman spectroscopy for quality control and detection of substandard painkillers[J]. Vibrational Spectroscopy, 2020, 111: 103147.

    [62] [62] Zhu W, Wen B Y, Jie L J, et al. Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer[J]. Biosensors and Bioelectronics, 2020, 154: 112067.

    [63] [63] Sieburg A, Jochum T, Trumbore S E, et al. Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth's critical zone[J]. Analyst, 2017, 142(18): 3360-3369.

    [64] [64] Zheng L N, Kulkarni P, Birch M E, et al. Analysis of crystalline silica aerosol using portable Raman spectrometry: feasibility of near real-time measurement[J]. Analytical Chemistry, 2018, 90(10): 6229-6239.

    [65] [65] Ghosal S, Wall S. Identifying regional soil as the potential source of PM2.5 particulate matter on air filters collected inImperial Valley, California-A Raman micro-spectroscopy study[J]. Environmental Pollution, 2019, 253: 181-189.

    [66] [66] Doughty D C, Hill S C. Raman spectra of atmospheric particles measured in Maryland, USA over 22.5h using an automated aerosol Raman spectrometer[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 244: 106839.

    [67] [67] Becucci M, Mancini M, Campo R, et al. Microplastics in the Florence wastewater treatment plant studied by a continuous sampling method and Raman spectroscopy: A preliminary investigation[J]. Science of The Total Environment, 2022, 808: 152025.

    [68] [68] Li D X, Yue W S, Gong T C, et al. A comprehensive SERS, SEM and EDX study of individual atmospheric PM2.5 particles in Chengdu, China[J]. Science of The Total Environment, 2023,883: 163668.

    [69] [69] Li D X, Yue W S, Gong T C, et al. Surface-enhanced Raman spectroscopy (SERS) for the characterization of atmospheric aerosols: Current status and challenges[J]. TrAC Trends in Analytical Chemistry, 2023, 170: 117426.

    [70] [70] Luo Y L, Su W, Rabbi M F, et al. Quantitative analysis of microplastics in water environments based on Raman spectroscopy and convolutional neural network[J]. Science of The Total Environment, 2024, 926: 171925.

    [71] [71] Egging V, Nguyen J, Kurouski D. Detection and identification of fungal infections in intact wheat and sorghum grain using a hand-held Raman spectrometer[J]. Analytical Chemistry, 2018, 90(14): 8616-8621.

    [72] [72] Krimmer M, Farber C, Kurouski D. Rapid and noninvasive tying and assessment of nutrient content of maize kernels using a handheld Raman spectrometer[J]. ACS Omega, 2019, 4(15): 16330-16335.

    [73] [73] Kashif M, Majeed M I, Nawaz H, et al. Surface-enhanced Raman spectroscopy for identification of food processing bacteria[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 261: 119989.

    [74] [74] Li J, Zhang L, Zhu F, et al. Rapid qualitative detection of titanium dioxide adulteration in persimmon icing using portable Raman spectrometer and Machine learning[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 290: 122221.

    [75] [75] Owens N A, Laurentius L B, Porter M D, et al. Handheld Raman spectrometer instrumentation for quantitative tuberculosis biomarker detection: a performance assessment for point-of-need infectious disease diagnostics[J]. Applied Spectroscopy, 2018, 72(7): 1104-1115.

    [76] [76] Gahlaut S K, Savargaonkar D, Sharan C, et al. SERS platform for dengue diagnosis from clinical samples employing a hand held Raman spectrometer[J]. Analytical Chemistry, 2020, 92(3): 2527-2534.

    [77] [77] Jalali M, Hosseini I I, AbdelFatah T, et al. Plasmonic nanobowtie fluidic device for sensitive detection of glioma extracellular vesicles by Raman spectrometry[J]. Lab on a Chip, 2021, 21(5): 855-866.

    [78] [78] Goulart A C C, Silveira L, Carvalho H C, et al. Diagnosing COVID-19 in human serum using Raman spectroscopy[J]. Lasers in Medical Science, 2022, 37: 2217-2226.

    [79] [79] Sun N, Lv Z Y, Zhu Y, et al. Raman enhancement properties of TiO2/Ag/ carbon fiber cloth using ultraviolet induced method: high sensitivity, flexible and reusable[J]. Optical Materials Express, 2023,13(3): 586-597.

    [80] [80] Sha H Y, W Z K, Zhu Y, et al. Open nanocavity-assisted Ag@PDMS as a soft SERS substrate with ultra-sensitivity and high uniformity[J]. Optical Express, 2023, 31(10): 16484-16494.

    Tools

    Get Citation

    Copy Citation Text

    JIANG Jie, LI Conghui, YAO Senhao, SHEN Shen, RAN Na, ZHANG Jie. Principles and typical applications of Raman spectrometers[J]. The Journal of Light Scattering, 2024, 36(3): 305

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 9, 2024

    Accepted: Nov. 21, 2024

    Published Online: Nov. 21, 2024

    The Author Email: Jie ZHANG (zhangjie@cqu.edu.cn)

    DOI:10.13883/j.issn1004-5929.202403007

    Topics