The Journal of Light Scattering, Volume. 36, Issue 3, 271(2024)

Recent progress in spatially offset Raman spectroscopy and its applications

HU Yi1... ZHONG Hang1, LIU Ying2, CHEN Jun1 and CHEN Jun1,* |Show fewer author(s)
Author Affiliations
  • 1Science and Technology on Surface Physics and Chemistry Laboratory, Sichuan Jiangyou, 621908, China
  • 2Institute of Materials, China Academy of Engineering Physics, Sichuan Mianyang,621907, China
  • show less
    References(110)

    [1] [1] Fan F T, Xu Q, Xia H A, et al. UV Raman Spectroscopic Characterization of Catalytic Materials[J]. Chinese Journal of Catalysis,2009, 30(8): 717-739.

    [2] [2] Wachs I E, Roberts C A. Monitoring Surface Metal Oxide Catalytic Active Sites with Raman Spectroscopy[J]. Chemical Society Reviews,2010, 39(12): 5002-5017.

    [3] [3] Wu J X, Xie L M. Structural Quantification for Graphene and Related Two-Dimensional Materials by Raman Spectroscopy[J]. Analytical Chemistry,2019, 91(1): 468-481.

    [5] [5] Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy[J]. Chemical Reviews,2020, 120(7): 3577-3630.

    [6] [6] Hess C. New Advances in Using Raman Spectroscopy for the Characterization of Catalysts and Catalytic Reactions[J]. Chemical Society Reviews,2021, 50(5): 3519-3564.

    [7] [7] Wang Y H, Zheng S S, Yang W M, et al. In Situ Raman Spectroscopy Reveals the Structure and Dissociation of Interfacial Water[J]. Nature,2021, 600(7887): 81-85.

    [8] [8] Wei D Y, Yue M F, Qin S N, et al. In Situ Raman Observation of Oxygen Activation and Reaction at Platinum-Ceria Interfaces during CO Oxidation[J]. Journal of the American Chemical Society,2021, 143(38): 15635-15643.

    [9] [9] Yoo R M S, Yesudoss D, Johnson D, et al. A Review on the Application of In-Situ Raman Spectroelectrochemistry to Understand the Mechanisms of Hydrogen Evolution Reaction[J]. ACS Catalysis,2023, 13(16): 10570-10601.

    [10] [10] Ma H, Yan S, Lu X Y, et al. Rapidly Determining the 3D Structure of Proteins by Surface-Enhanced Raman Spectroscopy[J]. Science Advances,2023, 9(47): eadh8362.

    [11] [11] Dodo K, Fujita K, Sodeoka M. Raman Spectroscopy for Chemical Biology Research[J]. Journal of the American Chemical Society,2022, 144(43): 19651-19667.

    [12] [12] BēRzi? K R, Fraser-Miller S J, Gordon K C. Recent Advances in Low-frequency Raman Spectroscopy for Pharmaceutical Applications[J]. International Journal of Pharmaceutics,2021, 592: 120034.

    [13] [13] Fini G. Applications of Raman Spectroscopy to Pharmacy[J]. Journal of Raman Spectroscopy,2004, 35(5): 335-337.

    [15] [15] Fan F T, Feng Z C, Li C. UV Raman Spectroscopic Study on the Synthesis Mechanism and Assembly of Molecular Sieves[J]. Chemical Society Reviews,2010, 39(12): 4794-4801.

    [16] [16] Schmitt R, Nenning A, Kraynis O, et al. A Review of Defect Structure and Chemistry in Ceria and Its Solid Solutions[J]. Chemical Society Reviews,2020, 49(2): 554-592.

    [17] [17] Matousek P, Clark I P, Draper E R, et al. Subsurface Probing in Diffusely Scattering Media Using Spatially Offset Raman Spectroscopy[J]. Applied Spectroscopy,2005, 59(4): 393-400.

    [18] [18] Nicolson F, Kircher M F, Stone N, et al. Spatially Offset Raman Spectroscopy for Biomedical Applications[J]. Chemical Society Reviews,2021, 50(1): 556-568.

    [19] [19] Mosca S, Conti C, Stone N, et al. Spatially Offset Raman Spectroscopy[J]. Nature Reviews Methods Primers,2021, 1(1): 1-21.

    [20] [20] Conti C, Colombo C, Realini M, et al. Subsurface Analysis of Painted Sculptures and Plasters Using Micrometre-scale Spatially Offset Raman Spectroscopy (micro-SORS)[J]. Journal of Raman Spectroscopy,2015, 46(5): 476-482.

    [21] [21] Conti C, Botteon A, Colombo C, et al. Advances in Raman Spectroscopy for the Non-destructive Subsurface Analysis of Artworks: Micro-SORS[J]. Journal of Cultural Heritage,2020, 43: 319-328.

    [22] [22] Matousek P, Conti C, Realini M, et al. Micro-Scale Spatially Offset Raman Spectroscopy for Non-Invasive Subsurface Analysis of Turbid Materials[J]. Analyst,2016, 141(3): 731-739.

    [23] [23] Eliasson C, Macleod N A, Matousek P. Noninvasive Detection of Concealed Liquid Explosives Using Raman Spectroscopy[J]. Analytical Chemistry,2007, 79(21): 8185-8189.

    [24] [24] Matousek P. Spatially Offset Raman Spectroscopy for Non-Invasive Analysis of Turbid Samples[J]. TRAC Trends in Analytical Chemistry,2018, 103: 209-214.

    [25] [25] Everall N, Hahn T, Matousek P, et al. Picosecond Time-Resolved Raman Spectroscopy of Solids: Capabilities and Limitations for Fluorescence Rejection and the Influence of Diffuse Reflectance[J]. Applied Spectroscopy,2001, 55(12): 1701-1708.

    [26] [26] Everall N, Hahn T, Matousek P, et al. Photon Migration in Raman Spectroscopy[J]. Applied Spectroscopy,2004, 58(5): 591-597.

    [27] [27] Bonner R F, Nossal R, Havlin S, et al. Model for Photon Migration in Turbid Biological Media[J]. Journal of the Optical Society ofAmerica A: Optics, Image Science, and Vision,1987, 4: 423-432.

    [28] [28] Martelli F, Binzoni T, Pifferi A, et al. There's Plenty of Light at the Bottom: Statistics of Photon Penetration Depth in Random Media[J]. Scientific Reports,2016, 6(1): 27057.

    [29] [29] Moran L J, Wordingham F, Gardner B, et al. An Experimental and Numerical Modelling Investigation of the Optical Properties of Intralipid Using Deep Raman Spectroscopy[J]. Analyst,2021, 146(24): 7601-7610.

    [30] [30] Wang L, Jacques S L, Zheng L. MCML—Monte Carlo Modeling of Light Transport in Multi-Layered Tissues[J]. Computer Methods and Programs in Biomedicine,1995, 47(2): 131-146.

    [31] [31] Matousek P, Morris M D, Everall N, et al. Numerical Simulations of Subsurface Probing in Diffusely Scattering Media Using Spatially Offset Raman Spectroscopy[J]. Applied Spectroscopy,2005, 59(12): 1485-1492.

    [32] [32] Mosca S, Dey P, Salimi M, et al. Estimating the Reduced Scattering Coefficient of Turbid Media Using Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2021, 93(7): 3386-3392.

    [33] [33] Mosca S, Dey P, Salimi M, et al. Spatially Offset Raman Spectroscopy-How Deep[J]. Analytical Chemistry,2021, 93(17): 6755-6762.

    [34] [34] Shillito G E, Mcmillan L, Bruce G D, et al. To Focus-Match or not to Focus-Match Inverse Spatially Offset Raman Spectroscopy: a Question of Light Penetration[J]. Optics Express,2022, 30(6): 8876-8888.

    [35] [35] Liu Z F, Huang M, Zhu Q B, et al. Evaluating Performance of SORS-Based Subsurface Signal Separation Methods Using Statistical Replication Monte Carlo Simulation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2023, 293: 122520.

    [36] [36] Zhang R J, Zhang X B, Hu C R, et al. Multi-optical Parameter Simulation of Spatially Offset Raman Spectroscopy[J]. AIP Advances,2023, 13(10): 105130.

    [38] [38] Matousek P, Draper E R C, Goodship A E, et al. Noninvasive Raman Spectroscopy of Human Tissue in Vivo[J]. Applied Spectroscopy,2006, 60(7): 758-763.

    [39] [39] Matousek P. Inverse Spatially Offset Raman Spectroscopy for Deep Noninvasive Probing of Turbid Media[J]. Applied Spectroscopy,2006, 60(11): 1341-1347.

    [40] [40] Macleod N A, Goodship A E, Parker A W, et al. Prediction of Sublayer Depth in Turbid Media Using Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2008, 80(21): 8146-8152.

    [41] [41] Gardner B, Matousek P, Stone N. Temperature Spatially Offset Raman Spectroscopy (T-SORS): Subsurface Chemically Specific Measurement of Temperature in Turbid Media Using Anti-Stokes Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2016, 88(1): 832-837.

    [42] [42] Odion R A, Strobbia P, Crawford B M, et al. Inverse Surface-Enhanced Spatially Offset Raman Spectroscopy (SESORS) through a Monkey Skull[J]. Journal of Raman Spectroscopy,2018, 49(9): 1452-1460.

    [43] [43] Mustafa H a B, Akkus O. Comparison of Diffuse Versus Inverse Spatially Offset Raman Spectroscopy Modalities for Analyte Detection through Barriers[J]. Vibrational Spectroscopy,2021, 113: 103228.

    [44] [44] Sekar S K V, Mosca S, Farina A, et al. Frequency Offset Raman Spectroscopy (FORS) for Depth Probing of Diffusive Media[J]. Optics Express,2017, 25(5): 4585-4597.

    [45] [45] Olds W J, Jaatinen E, Fredericks P, et al. Spatially Offset Raman Spectroscopy (SORS) for the Analysis and Detection of Packaged Pharmaceuticals and Concealed Drugs[J]. Forensic Science International,2011, 212(1-3): 69-77.

    [46] [46] Fleming H, Chen M, Bruce G D, et al. Through-Bottle Whisky Sensing and Dlassification using Raman Spectroscopy in an Axicon-Based Backscattering Configuration[J]. Analytical Methods,2020, 12(37): 4572-4578.

    [47] [47] Khan K M, Dutta S B, Krishna H, et al. Inverse SORS for detecting a low Raman-active turbid sample placed inside a highly Raman-active diffusely scattering matrix - A feasibility study[J]. Journal of Biophotonics,2016, 9(9): 879-887.

    [48] [48] Khan K M, Dutta S B, Kumar N, et al. Inverse Spatially Offset Raman Spectroscopy Using Optical Fibers: An Axicon Lens-Free Approach[J]. Journal of Biophotonics,2019, 12(11): e201900140.

    [49] [49] Vandenabeele P, Conti C, Rousaki A, et al. Development of a Fiber-Optics Microspatially Offset Raman Spectroscopy Sensor for Probing Layered Materials[J]. Analytical Chemistry,2017, 89(17): 9218-9223.

    [50] [50] Liao Z Y, Sinjab F, Gibson G, et al. DMD-Based Software-Configurable Spatially Offset Raman Spectroscopy for Spectral Depth-Profiling of Optically Turbid Samples[J]. Optics Express,2016, 24(12): 12701-12712.

    [51] [51] Cui H, Glidle A, Cooper J M. Spatial Heterodyne Offset Raman Spectroscopy Enabling Rapid, High Sensitivity Characterization of Materials' Interfaces[J]. Small,2021: e2101114.

    [52] [52] Eliasson C, Matousek P. Noninvasive Authentication of Pharmaceutical Products through Packaging Using Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2007, 79(4): 1696-1701.

    [53] [53] Eliasson C, Macleod N A, Matousek P. Non-Invasive Detection of Powders Concealed within Diffusely Scattering Plastic Containers[J]. Vibrational Spectroscopy,2008, 48(1): 8-11.

    [54] [54] Olds W J, Sundarajoo S, Selby M, et al. Noninvasive, Quantitative Analysis of Drug Mixtures in Containers Using Spatially Offset Raman Spectroscopy (SORS) and Multivariate Statistical Analysis[J]. Applied Spectroscopy,2012, 66(5): 530-537.

    [55] [55] BēRzi? K R, Fraser-Miller S J, Gordon K C. A New Frontier for Nondestructive Spatial Analysis of Pharmaceutical Solid Dosage Forms: Spatially Offset Low-Frequency Raman Spectroscopy[J]. Analytical Chemistry,2021, 93(8): 3698-3705.

    [56] [56] Churchwell J H, Sowoidnich K, Chan O, et al. Adaptive Band Target Entropy Minimization: Optimization for the Decomposition of Spatially Offset Raman Spectra of Bone[J]. Journal of Raman Spectroscopy,2020, 51(1): 66-78.

    [57] [57] Buckley K, Kerns J G, Parker A W, et al. Decomposition of in Vivo Spatially Offset Raman Spectroscopy Data using Multivariate Analysis Techniques[J]. Journal of Raman Spectroscopy,2014, 45(2): 188-192.

    [58] [58] Keller M D, Majumder S K, Mahadevan-Jansen A. Spatially Offset Raman Spectroscopy of Layered Soft Tissues[J]. Optics Letters,2009, 34(7): 926-928.

    [59] [59] Keller M D, Vargis E, Granja N D, et al. Development of a Spatially Offset Raman Spectroscopy Probe for Breast Tumor Surgical Margin Evaluation[J]. Journal of Biomedical Optics,2011, 16(7): 077006-077006.

    [60] [60] Afseth N K, Bloomfield M, Wold J P, et al. A Novel Approach for Subsurface Through-Skin Analysis of Salmon Using Spatially Offset Raman Spectroscopy (SORS)[J]. Applied Spectroscopy,2014, 68(2): 255-262.

    [61] [61] Kast R E, Tucker S C, Killian K, et al. Emerging Technology: Applications of Raman Spectroscopy for Prostate Cancer[J]. Cancer and Metastasis Reviews,2014, 33(2-3): 673-693.

    [62] [62] Pour S O, Fowler S M, Hopkins D L, et al. Differentiating Various Beef Cuts Using Spatially Offset Raman Spectroscopy[J]. Journal of Raman Spectroscopy,2020, 51(4): 711-716.

    [63] [63] Stone N, Baker R, Rogers K, et al. Subsurface Probing of Calcifications with Spatially Offset Raman Spectroscopy (SORS): Future Possibilities for the Diagnosis of Breast Cancer[J]. Analyst,2007, 132(9): 899-905.

    [64] [64] Sharma B, Ma K, Glucksberg M R, et al. Seeing through Bone with Surface-Enhanced Spatially Offset Raman Spectroscopy[J]. Journal of the American Chemical Society,2013, 135(46): 17290-17293.

    [65] [65] Sowoidnich K, Churchwell J H, Buckley K, et al. Photon Migration of Raman Signal in Bone as Measured with Spatially Offset Raman Spectroscopy[J]. Journal of Raman Spectroscopy,2016, 47(2): 240-247.

    [66] [66] Liao Z Y, Sinjab F, Nommeots-Nomm A, et al. Feasibility of Spatially Offset Raman Spectroscopy for in Vitro and in Vivo Monitoring Mineralization of Bone Tissue Engineering Scaffolds[J]. Analytical Chemistry,2017, 89(1): 847-853.

    [67] [67] Shu C, Chen K R, Lynch M, et al. Spatially Offset Raman Spectroscopy for in Vivo Bone Strength Prediction[J]. Biomedical Optics Express,2018, 9(10): 4781-4791.

    [68] [68] Buckley K, Kerns J G, Vinton J, et al. Towards the in Vivo Prediction of Fragility Fractures with Raman Spectroscopy[J]. Journal of Raman Spectroscopy,2015, 46(7): 610-618.

    [69] [69] Cui H, Glidle A, Cooper J M. Highly Efficient Spatially Offset Raman Spectroscopy to Profile Molecular Composition in Bone[J]. IEEE Access,2020, 8: 62905-62911.

    [70] [70] Buckley K, Atkins C G, Chen D, et al. Non-Invasive Spectroscopy of Transfusable Red Blood Cells Stored inside Sealed Plastic Blood-Bags[J]. Analyst,2016, 141(5): 1678-1685.

    [71] [71] Chen K, Massie C, Awad H A, et al. Determination of Best Raman Spectroscopy Spatial Offsets for Transcutaneous Bone Quality Assessments in Human Hands[J]. Biomedical Optics Express,2021, 12(12): 7517-7525.

    [72] [72] Dooley M, Prasopthum A, Liao Z Y, et al. Spatially Offset Raman Spectroscopy for Monitoring Mineralization of Bone Tissue Engineering Scaffolds: Feasibility Study Based on Phantom Samples[J]. Biomedical Optics Express,2019, 10(4): 1678-1690.

    [73] [73] Sowoidnich K, Churchwell J H, Buckley K, et al. Spatially Offset Raman Spectroscopy for Photon Migration Studies in Bones with Different Mineralization Levels[J]. Analyst,2017, 142(17): 3219-3226.

    [74] [74] Nicolson F, Jamieson L E, Mabbott S, et al. Multiplex imaging of Live Breast Cancer Tumour Models through Tissue Using Handheld Surface Enhanced Spatially Offset Resonance Raman Spectroscopy (SESORRS)[J]. Chemical Communications,2018, 54(61): 8530-8533.

    [75] [75] Xie H N, Stevenson R, Stone N, et al. Tracking Bisphosphonates through a 20 mm Thick Porcine Tissue by Using Surface-Enhanced Spatially Offset Raman Spectroscopy[J]. Angewandte Chemie International Edition,2012, 51(34): 8509-8511.

    [76] [76] Mosca S, Dey P, Tabish T A, et al. Determination of Inclusion Depth in ex Vivo Znimal Tissues Using Surface Enhanced Deep Raman Spectroscopy[J]. Journal of Biophotonics,2020, 13(1): e201960092.

    [77] [77] Asiala S M, Shand N C, Faulds K, et al. Surface-Enhanced, Spatially Offset Raman Spectroscopy (SESORS) in Tissue Analogues[J]. ACS Applied Materials & Interfaces,2017, 9(30): 25488-25494.

    [78] [78] Nicolson F, Jamieson L E, Mabbott S, et al. Towards Establishing a Minimal Nanoparticle Concentration for Applications Involving Surface Enhanced Spatially Offset Resonance Raman Spectroscopy (SESORR) in Vivo[J]. Analyst,2018, 143(22): 5358-5363.

    [79] [79] Moody A S, Baghernejad P C, Webb K R, et al. Surface Enhanced Spatially Offset Raman Spectroscopy Detection of Neurochemicals Through the Skull[J]. Analytical Chemistry,2017, 89(11): 5689-5693.

    [80] [80] Berry M E, Mccabe S M, Sloan-Dennison S, et al. Tomographic Imaging and Localization of Nanoparticles in Tissue Using Surface-Enhanced Spatially Offset Raman Spectroscopy[J]. ACS Applied Materials & Interfaces,2022, 14(28): 31613-31624.

    [81] [81] Gardner B, Matousek P, Stone N. Direct Monitoring of Light Mediated Hyperthermia Induced Within Mammalian Tissues Using Surface Enhanced Spatially Offset Raman Spectroscopy (T-SESORS)[J]. Analyst,2019, 144(11): 3552-3555.

    [82] [82] Schulmerich M V, Cole J H, Kreider J M, et al. Transcutaneous Raman Spectroscopy of Murine Bone In Vivo[J]. Applied Spectroscopy,2009, 63(3): 286-295.

    [83] [83] Matousek P, Parker A W. Bulk Raman Analysis of Pharmaceutical Tablets[J]. Applied Spectroscopy,2006, 60(12): 1353-1357.

    [84] [84] Ricci C, Eliasson C, Macleod N A, et al. Characterization of Genuine and Fake Artesunate Anti-malarial Tablets Using Fourier Transform Infrared Imaging and Spatially Offset Raman Spectroscopy through Blister Packs[J]. Analytical and Bioanalytical Chemistry,2007, 389(5): 1525-1532.

    [85] [85] Mansouri M A, Sacre P Y, Coic L, et al. Quantitation of Active Pharmaceutical Ingredient through the Packaging using Raman Handheld Spectrophotometers: A Comparison Study[J]. Talanta,2020, 207: 120306.

    [86] [86] Chao K L, Dhakal S, Qin J W, et al. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders[J]. Sensors,2017, 17(3): 618.

    [87] [87] Eliasson C, Matousek P. Passive Signal Enhancement in Spatially Offset Raman Spectroscopy[J]. Journal of Raman Spectroscopy,2008, 39(5): 633-637.

    [88] [88] Song S W, Kim J, Eum C, et al. Hyperspectral Raman Line Mapping as an Effective Tool To Monitor the Coating Thickness of Pharmaceutical Tablets[J]. Analytical Chemistry,2019, 91(9): 5810-5816.

    [89] [89] BēRzi? K R, Fraser-Miller S J, Gordon K C. Pseudo-3D Subsurface Imaging of Pharmaceutical Solid Dosage Forms Using Micro-spatially Offset Low-Frequency Raman Spectroscopy[J]. Analytical Chemistry,2021, 93(25): 8986-8993.

    [90] [90] Qin J W, Kim M S, Chao K L, et al. Subsurface Inspection of Food Safety and Quality Using Line-Scan Spatially Offset Raman Spectroscopy Technique[J]. Food Control,2017, 75: 246-254.

    [91] [91] Lohumi S, Lee H, Kim M S, et al. Through-Packaging Analysis of Butter Adulteration Using Line-Scan Spatially Offset Raman Spectroscopy[J]. Analytical and Bioanalytical Chemistry,2018, 410(22): 5663-5673.

    [92] [92] Ellis D I, Eccles R, Xu Y, et al. Through-Container, Extremely Low Concentration Detection of Multiple Chemical Markers of Counterfeit Alcohol Using a Handheld SORS Device[J]. Scientific Reports,2017, 7(1): 12082.

    [93] [93] Qin J W, Chao K L, Kim M S. Investigation of Raman Chemical Imaging for Detection of Lycopene Lhanges in Tomatoes during Postharvest Ripening[J]. Journal of Food Engineering,2011, 107(3-4): 277-288.

    [94] [94] Song S W, Jeong Y C, Park C R, et al. Quantitative Fat Analysis of Milk Using a Line-Illumination Spatially Offset Raman Probe through Carton Packaging[J]. Analyst,2023, 148(14): 3321-3329.

    [95] [95] Conti C, Realini M, Colombo C, et al. Noninvasive Analysis of Thin Turbid Layers Using Microscale Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2015, 87(11): 5810-5815.

    [96] [96] Conti C, Colombo C, Realini M, et al. Subsurface Raman Analysis of Thin Painted Layers[J]. Applied Spectroscopy,2014, 68(6): 686-691.

    [97] [97] Conti C, Botteon A, Colombo C, et al. Investigation of Heterogeneous Painted Systems by Micro-Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2017, 89(21): 11476-11483.

    [98] [98] Lux A, Realini M, Botteon A, et al. Advanced Portable micro-SORS Prototype Coupled with SERDS for Heritage Science[J]. Analyst,2024, 149(8): 2317-2327.

    [99] [99] Botteon A, Conti C, Realini M, et al. Discovering Hidden Painted Images: Subsurface Imaging Using Microscale Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2017, 89(1): 792-798.

    [100] [100] Botteon A, Vermeulen M, Cristina L, et al. Advanced Microspatially Offset Raman Spectroscopy for Noninvasive Imaging of Concealed Texts and Figures Using Raman Signal, Fluorescence Emission, and Overall Spectral Intensity[J]. Analytical Chemistry,2024, 96(11): 4535-4543.

    [101] [101] Bersani D, Conti C, Matousek P, et al. Methodological Evolutions of Raman Spectroscopy in Art and Archaeology[J]. Analytical Methods,2016, 8(48): 8395-8409.

    [102] [102] Realini M, Conti C, Botteon A, et al. Development of a Full Micro-Scale Spatially Offset Raman Spectroscopy Prototype as a Portable Analytical Tool[J]. Analyst,2017, 142(2): 351-355.

    [103] [103] Chiriu D, Desogus G, Pisu F A, et al. Beyond the Surface: Raman Micro-SORS for in Depth Non-Destructive Analysis of Fresco Layers[J]. Microchemical Journal,2020, 153: 104404.

    [104] [104] Zachhuber B, Gasser C, Chrysostom E, et al. Stand-off Spatial Offset Raman Spectroscopy for the Detection of Concealed Content in Distant Objects[J]. Analytical Chemistry,2011, 83(24): 9438-9442.

    [105] [105] Gupta N, Rodriguez J D, Yilmaz H. Through-Container Quantitative Analysis of Hand Sanitizers Using Spatially Offset Raman Spectroscopy[J]. Communications Chemistry,2021, 4(1): 126.

    [106] [106] Hopkins R J, Pelfrey S H, Shand N C. Short-Wave Infrared Excited Spatially Offset Raman Spectroscopy (SORS) for through-Barrier Detection[J]. Analyst,2012, 137(19): 4408-4410.

    [107] [107] Cletus B, Olds W, Fredericks P M, et al. Real-Time Detection of Concealed Chemical Hazards Under Ambient Light Conditions Using Raman Spectroscopy[J]. Journal of Forensic Science,2013, 58(4): 1008-1014.

    [108] [108] Izake E L, Sundarajoo S, Olds W, et al. Standoff Raman Spectrometry for the Non-invasive Detection of Explosives Precursors in Highly Fluorescing Packaging[J]. Talanta,2013, 103: 20-27.

    [109] [109] Gulia S, Gulati K K, Gambhir V, et al. Detection of Explosive Materials and Their Precursors through Translucent Commercial Bottles Using Spatially Offset Raman Spectroscopy Using Uxcitation Wavelength In Visible Range[J]. Optical Engineering,2019, 58(12): 127102.

    [110] [110] Izake E L, Cletus B, Olds W, et al. Deep Raman Spectroscopy for the Non-invasive Standoff Detection of Concealed Chemical Threat Agents[J]. Talanta,2012, 94: 342-347.

    [111] [111] Assi S, Abbas I, Tang L, et al. Evaluating the detection of cocaine and its impurities concealed inside fruit- and vegetable- food products using handheld spatially offset Raman spectroscopy[J]. Vibrational Spectroscopy,2024, 131: 103662.

    [112] [112] Botteon A, Yiming J, Prati S, et al. Non-Invasive Characterisation of Molecular Diffusion of Agent into Turbid Matrix Using Micro-SORS[J]. Talanta,2020, 218: 121078.

    [113] [113] Botteon A, Kim W H, Colombo C, et al. Non-destructive Monitoring of Dye Depth Profile in Mesoporous TiO2 Electrodes of Solar Cells with Micro-SORS[J]. Analytical Chemistry,2022, 94(6): 2966-2972.

    Tools

    Get Citation

    Copy Citation Text

    HU Yi, ZHONG Hang, LIU Ying, CHEN Jun, CHEN Jun. Recent progress in spatially offset Raman spectroscopy and its applications[J]. The Journal of Light Scattering, 2024, 36(3): 271

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 9, 2024

    Accepted: Nov. 21, 2024

    Published Online: Nov. 21, 2024

    The Author Email: CHEN Jun (junchenspc@caep.cn)

    DOI:10.13883/j.issn1004-5929.202403005

    Topics