The Journal of Light Scattering, Volume. 36, Issue 3, 271(2024)
Recent progress in spatially offset Raman spectroscopy and its applications
[1] [1] Fan F T, Xu Q, Xia H A, et al. UV Raman Spectroscopic Characterization of Catalytic Materials[J]. Chinese Journal of Catalysis,2009, 30(8): 717-739.
[2] [2] Wachs I E, Roberts C A. Monitoring Surface Metal Oxide Catalytic Active Sites with Raman Spectroscopy[J]. Chemical Society Reviews,2010, 39(12): 5002-5017.
[3] [3] Wu J X, Xie L M. Structural Quantification for Graphene and Related Two-Dimensional Materials by Raman Spectroscopy[J]. Analytical Chemistry,2019, 91(1): 468-481.
[5] [5] Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy[J]. Chemical Reviews,2020, 120(7): 3577-3630.
[6] [6] Hess C. New Advances in Using Raman Spectroscopy for the Characterization of Catalysts and Catalytic Reactions[J]. Chemical Society Reviews,2021, 50(5): 3519-3564.
[7] [7] Wang Y H, Zheng S S, Yang W M, et al. In Situ Raman Spectroscopy Reveals the Structure and Dissociation of Interfacial Water[J]. Nature,2021, 600(7887): 81-85.
[8] [8] Wei D Y, Yue M F, Qin S N, et al. In Situ Raman Observation of Oxygen Activation and Reaction at Platinum-Ceria Interfaces during CO Oxidation[J]. Journal of the American Chemical Society,2021, 143(38): 15635-15643.
[9] [9] Yoo R M S, Yesudoss D, Johnson D, et al. A Review on the Application of In-Situ Raman Spectroelectrochemistry to Understand the Mechanisms of Hydrogen Evolution Reaction[J]. ACS Catalysis,2023, 13(16): 10570-10601.
[10] [10] Ma H, Yan S, Lu X Y, et al. Rapidly Determining the 3D Structure of Proteins by Surface-Enhanced Raman Spectroscopy[J]. Science Advances,2023, 9(47): eadh8362.
[11] [11] Dodo K, Fujita K, Sodeoka M. Raman Spectroscopy for Chemical Biology Research[J]. Journal of the American Chemical Society,2022, 144(43): 19651-19667.
[12] [12] BēRzi? K R, Fraser-Miller S J, Gordon K C. Recent Advances in Low-frequency Raman Spectroscopy for Pharmaceutical Applications[J]. International Journal of Pharmaceutics,2021, 592: 120034.
[13] [13] Fini G. Applications of Raman Spectroscopy to Pharmacy[J]. Journal of Raman Spectroscopy,2004, 35(5): 335-337.
[15] [15] Fan F T, Feng Z C, Li C. UV Raman Spectroscopic Study on the Synthesis Mechanism and Assembly of Molecular Sieves[J]. Chemical Society Reviews,2010, 39(12): 4794-4801.
[16] [16] Schmitt R, Nenning A, Kraynis O, et al. A Review of Defect Structure and Chemistry in Ceria and Its Solid Solutions[J]. Chemical Society Reviews,2020, 49(2): 554-592.
[17] [17] Matousek P, Clark I P, Draper E R, et al. Subsurface Probing in Diffusely Scattering Media Using Spatially Offset Raman Spectroscopy[J]. Applied Spectroscopy,2005, 59(4): 393-400.
[18] [18] Nicolson F, Kircher M F, Stone N, et al. Spatially Offset Raman Spectroscopy for Biomedical Applications[J]. Chemical Society Reviews,2021, 50(1): 556-568.
[19] [19] Mosca S, Conti C, Stone N, et al. Spatially Offset Raman Spectroscopy[J]. Nature Reviews Methods Primers,2021, 1(1): 1-21.
[20] [20] Conti C, Colombo C, Realini M, et al. Subsurface Analysis of Painted Sculptures and Plasters Using Micrometre-scale Spatially Offset Raman Spectroscopy (micro-SORS)[J]. Journal of Raman Spectroscopy,2015, 46(5): 476-482.
[21] [21] Conti C, Botteon A, Colombo C, et al. Advances in Raman Spectroscopy for the Non-destructive Subsurface Analysis of Artworks: Micro-SORS[J]. Journal of Cultural Heritage,2020, 43: 319-328.
[22] [22] Matousek P, Conti C, Realini M, et al. Micro-Scale Spatially Offset Raman Spectroscopy for Non-Invasive Subsurface Analysis of Turbid Materials[J]. Analyst,2016, 141(3): 731-739.
[23] [23] Eliasson C, Macleod N A, Matousek P. Noninvasive Detection of Concealed Liquid Explosives Using Raman Spectroscopy[J]. Analytical Chemistry,2007, 79(21): 8185-8189.
[24] [24] Matousek P. Spatially Offset Raman Spectroscopy for Non-Invasive Analysis of Turbid Samples[J]. TRAC Trends in Analytical Chemistry,2018, 103: 209-214.
[25] [25] Everall N, Hahn T, Matousek P, et al. Picosecond Time-Resolved Raman Spectroscopy of Solids: Capabilities and Limitations for Fluorescence Rejection and the Influence of Diffuse Reflectance[J]. Applied Spectroscopy,2001, 55(12): 1701-1708.
[26] [26] Everall N, Hahn T, Matousek P, et al. Photon Migration in Raman Spectroscopy[J]. Applied Spectroscopy,2004, 58(5): 591-597.
[27] [27] Bonner R F, Nossal R, Havlin S, et al. Model for Photon Migration in Turbid Biological Media[J]. Journal of the Optical Society ofAmerica A: Optics, Image Science, and Vision,1987, 4: 423-432.
[28] [28] Martelli F, Binzoni T, Pifferi A, et al. There's Plenty of Light at the Bottom: Statistics of Photon Penetration Depth in Random Media[J]. Scientific Reports,2016, 6(1): 27057.
[29] [29] Moran L J, Wordingham F, Gardner B, et al. An Experimental and Numerical Modelling Investigation of the Optical Properties of Intralipid Using Deep Raman Spectroscopy[J]. Analyst,2021, 146(24): 7601-7610.
[30] [30] Wang L, Jacques S L, Zheng L. MCML—Monte Carlo Modeling of Light Transport in Multi-Layered Tissues[J]. Computer Methods and Programs in Biomedicine,1995, 47(2): 131-146.
[31] [31] Matousek P, Morris M D, Everall N, et al. Numerical Simulations of Subsurface Probing in Diffusely Scattering Media Using Spatially Offset Raman Spectroscopy[J]. Applied Spectroscopy,2005, 59(12): 1485-1492.
[32] [32] Mosca S, Dey P, Salimi M, et al. Estimating the Reduced Scattering Coefficient of Turbid Media Using Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2021, 93(7): 3386-3392.
[33] [33] Mosca S, Dey P, Salimi M, et al. Spatially Offset Raman Spectroscopy-How Deep[J]. Analytical Chemistry,2021, 93(17): 6755-6762.
[34] [34] Shillito G E, Mcmillan L, Bruce G D, et al. To Focus-Match or not to Focus-Match Inverse Spatially Offset Raman Spectroscopy: a Question of Light Penetration[J]. Optics Express,2022, 30(6): 8876-8888.
[35] [35] Liu Z F, Huang M, Zhu Q B, et al. Evaluating Performance of SORS-Based Subsurface Signal Separation Methods Using Statistical Replication Monte Carlo Simulation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2023, 293: 122520.
[36] [36] Zhang R J, Zhang X B, Hu C R, et al. Multi-optical Parameter Simulation of Spatially Offset Raman Spectroscopy[J]. AIP Advances,2023, 13(10): 105130.
[38] [38] Matousek P, Draper E R C, Goodship A E, et al. Noninvasive Raman Spectroscopy of Human Tissue in Vivo[J]. Applied Spectroscopy,2006, 60(7): 758-763.
[39] [39] Matousek P. Inverse Spatially Offset Raman Spectroscopy for Deep Noninvasive Probing of Turbid Media[J]. Applied Spectroscopy,2006, 60(11): 1341-1347.
[40] [40] Macleod N A, Goodship A E, Parker A W, et al. Prediction of Sublayer Depth in Turbid Media Using Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2008, 80(21): 8146-8152.
[41] [41] Gardner B, Matousek P, Stone N. Temperature Spatially Offset Raman Spectroscopy (T-SORS): Subsurface Chemically Specific Measurement of Temperature in Turbid Media Using Anti-Stokes Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2016, 88(1): 832-837.
[42] [42] Odion R A, Strobbia P, Crawford B M, et al. Inverse Surface-Enhanced Spatially Offset Raman Spectroscopy (SESORS) through a Monkey Skull[J]. Journal of Raman Spectroscopy,2018, 49(9): 1452-1460.
[43] [43] Mustafa H a B, Akkus O. Comparison of Diffuse Versus Inverse Spatially Offset Raman Spectroscopy Modalities for Analyte Detection through Barriers[J]. Vibrational Spectroscopy,2021, 113: 103228.
[44] [44] Sekar S K V, Mosca S, Farina A, et al. Frequency Offset Raman Spectroscopy (FORS) for Depth Probing of Diffusive Media[J]. Optics Express,2017, 25(5): 4585-4597.
[45] [45] Olds W J, Jaatinen E, Fredericks P, et al. Spatially Offset Raman Spectroscopy (SORS) for the Analysis and Detection of Packaged Pharmaceuticals and Concealed Drugs[J]. Forensic Science International,2011, 212(1-3): 69-77.
[46] [46] Fleming H, Chen M, Bruce G D, et al. Through-Bottle Whisky Sensing and Dlassification using Raman Spectroscopy in an Axicon-Based Backscattering Configuration[J]. Analytical Methods,2020, 12(37): 4572-4578.
[47] [47] Khan K M, Dutta S B, Krishna H, et al. Inverse SORS for detecting a low Raman-active turbid sample placed inside a highly Raman-active diffusely scattering matrix - A feasibility study[J]. Journal of Biophotonics,2016, 9(9): 879-887.
[48] [48] Khan K M, Dutta S B, Kumar N, et al. Inverse Spatially Offset Raman Spectroscopy Using Optical Fibers: An Axicon Lens-Free Approach[J]. Journal of Biophotonics,2019, 12(11): e201900140.
[49] [49] Vandenabeele P, Conti C, Rousaki A, et al. Development of a Fiber-Optics Microspatially Offset Raman Spectroscopy Sensor for Probing Layered Materials[J]. Analytical Chemistry,2017, 89(17): 9218-9223.
[50] [50] Liao Z Y, Sinjab F, Gibson G, et al. DMD-Based Software-Configurable Spatially Offset Raman Spectroscopy for Spectral Depth-Profiling of Optically Turbid Samples[J]. Optics Express,2016, 24(12): 12701-12712.
[51] [51] Cui H, Glidle A, Cooper J M. Spatial Heterodyne Offset Raman Spectroscopy Enabling Rapid, High Sensitivity Characterization of Materials' Interfaces[J]. Small,2021: e2101114.
[52] [52] Eliasson C, Matousek P. Noninvasive Authentication of Pharmaceutical Products through Packaging Using Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2007, 79(4): 1696-1701.
[53] [53] Eliasson C, Macleod N A, Matousek P. Non-Invasive Detection of Powders Concealed within Diffusely Scattering Plastic Containers[J]. Vibrational Spectroscopy,2008, 48(1): 8-11.
[54] [54] Olds W J, Sundarajoo S, Selby M, et al. Noninvasive, Quantitative Analysis of Drug Mixtures in Containers Using Spatially Offset Raman Spectroscopy (SORS) and Multivariate Statistical Analysis[J]. Applied Spectroscopy,2012, 66(5): 530-537.
[55] [55] BēRzi? K R, Fraser-Miller S J, Gordon K C. A New Frontier for Nondestructive Spatial Analysis of Pharmaceutical Solid Dosage Forms: Spatially Offset Low-Frequency Raman Spectroscopy[J]. Analytical Chemistry,2021, 93(8): 3698-3705.
[56] [56] Churchwell J H, Sowoidnich K, Chan O, et al. Adaptive Band Target Entropy Minimization: Optimization for the Decomposition of Spatially Offset Raman Spectra of Bone[J]. Journal of Raman Spectroscopy,2020, 51(1): 66-78.
[57] [57] Buckley K, Kerns J G, Parker A W, et al. Decomposition of in Vivo Spatially Offset Raman Spectroscopy Data using Multivariate Analysis Techniques[J]. Journal of Raman Spectroscopy,2014, 45(2): 188-192.
[58] [58] Keller M D, Majumder S K, Mahadevan-Jansen A. Spatially Offset Raman Spectroscopy of Layered Soft Tissues[J]. Optics Letters,2009, 34(7): 926-928.
[59] [59] Keller M D, Vargis E, Granja N D, et al. Development of a Spatially Offset Raman Spectroscopy Probe for Breast Tumor Surgical Margin Evaluation[J]. Journal of Biomedical Optics,2011, 16(7): 077006-077006.
[60] [60] Afseth N K, Bloomfield M, Wold J P, et al. A Novel Approach for Subsurface Through-Skin Analysis of Salmon Using Spatially Offset Raman Spectroscopy (SORS)[J]. Applied Spectroscopy,2014, 68(2): 255-262.
[61] [61] Kast R E, Tucker S C, Killian K, et al. Emerging Technology: Applications of Raman Spectroscopy for Prostate Cancer[J]. Cancer and Metastasis Reviews,2014, 33(2-3): 673-693.
[62] [62] Pour S O, Fowler S M, Hopkins D L, et al. Differentiating Various Beef Cuts Using Spatially Offset Raman Spectroscopy[J]. Journal of Raman Spectroscopy,2020, 51(4): 711-716.
[63] [63] Stone N, Baker R, Rogers K, et al. Subsurface Probing of Calcifications with Spatially Offset Raman Spectroscopy (SORS): Future Possibilities for the Diagnosis of Breast Cancer[J]. Analyst,2007, 132(9): 899-905.
[64] [64] Sharma B, Ma K, Glucksberg M R, et al. Seeing through Bone with Surface-Enhanced Spatially Offset Raman Spectroscopy[J]. Journal of the American Chemical Society,2013, 135(46): 17290-17293.
[65] [65] Sowoidnich K, Churchwell J H, Buckley K, et al. Photon Migration of Raman Signal in Bone as Measured with Spatially Offset Raman Spectroscopy[J]. Journal of Raman Spectroscopy,2016, 47(2): 240-247.
[66] [66] Liao Z Y, Sinjab F, Nommeots-Nomm A, et al. Feasibility of Spatially Offset Raman Spectroscopy for in Vitro and in Vivo Monitoring Mineralization of Bone Tissue Engineering Scaffolds[J]. Analytical Chemistry,2017, 89(1): 847-853.
[67] [67] Shu C, Chen K R, Lynch M, et al. Spatially Offset Raman Spectroscopy for in Vivo Bone Strength Prediction[J]. Biomedical Optics Express,2018, 9(10): 4781-4791.
[68] [68] Buckley K, Kerns J G, Vinton J, et al. Towards the in Vivo Prediction of Fragility Fractures with Raman Spectroscopy[J]. Journal of Raman Spectroscopy,2015, 46(7): 610-618.
[69] [69] Cui H, Glidle A, Cooper J M. Highly Efficient Spatially Offset Raman Spectroscopy to Profile Molecular Composition in Bone[J]. IEEE Access,2020, 8: 62905-62911.
[70] [70] Buckley K, Atkins C G, Chen D, et al. Non-Invasive Spectroscopy of Transfusable Red Blood Cells Stored inside Sealed Plastic Blood-Bags[J]. Analyst,2016, 141(5): 1678-1685.
[71] [71] Chen K, Massie C, Awad H A, et al. Determination of Best Raman Spectroscopy Spatial Offsets for Transcutaneous Bone Quality Assessments in Human Hands[J]. Biomedical Optics Express,2021, 12(12): 7517-7525.
[72] [72] Dooley M, Prasopthum A, Liao Z Y, et al. Spatially Offset Raman Spectroscopy for Monitoring Mineralization of Bone Tissue Engineering Scaffolds: Feasibility Study Based on Phantom Samples[J]. Biomedical Optics Express,2019, 10(4): 1678-1690.
[73] [73] Sowoidnich K, Churchwell J H, Buckley K, et al. Spatially Offset Raman Spectroscopy for Photon Migration Studies in Bones with Different Mineralization Levels[J]. Analyst,2017, 142(17): 3219-3226.
[74] [74] Nicolson F, Jamieson L E, Mabbott S, et al. Multiplex imaging of Live Breast Cancer Tumour Models through Tissue Using Handheld Surface Enhanced Spatially Offset Resonance Raman Spectroscopy (SESORRS)[J]. Chemical Communications,2018, 54(61): 8530-8533.
[75] [75] Xie H N, Stevenson R, Stone N, et al. Tracking Bisphosphonates through a 20 mm Thick Porcine Tissue by Using Surface-Enhanced Spatially Offset Raman Spectroscopy[J]. Angewandte Chemie International Edition,2012, 51(34): 8509-8511.
[76] [76] Mosca S, Dey P, Tabish T A, et al. Determination of Inclusion Depth in ex Vivo Znimal Tissues Using Surface Enhanced Deep Raman Spectroscopy[J]. Journal of Biophotonics,2020, 13(1): e201960092.
[77] [77] Asiala S M, Shand N C, Faulds K, et al. Surface-Enhanced, Spatially Offset Raman Spectroscopy (SESORS) in Tissue Analogues[J]. ACS Applied Materials & Interfaces,2017, 9(30): 25488-25494.
[78] [78] Nicolson F, Jamieson L E, Mabbott S, et al. Towards Establishing a Minimal Nanoparticle Concentration for Applications Involving Surface Enhanced Spatially Offset Resonance Raman Spectroscopy (SESORR) in Vivo[J]. Analyst,2018, 143(22): 5358-5363.
[79] [79] Moody A S, Baghernejad P C, Webb K R, et al. Surface Enhanced Spatially Offset Raman Spectroscopy Detection of Neurochemicals Through the Skull[J]. Analytical Chemistry,2017, 89(11): 5689-5693.
[80] [80] Berry M E, Mccabe S M, Sloan-Dennison S, et al. Tomographic Imaging and Localization of Nanoparticles in Tissue Using Surface-Enhanced Spatially Offset Raman Spectroscopy[J]. ACS Applied Materials & Interfaces,2022, 14(28): 31613-31624.
[81] [81] Gardner B, Matousek P, Stone N. Direct Monitoring of Light Mediated Hyperthermia Induced Within Mammalian Tissues Using Surface Enhanced Spatially Offset Raman Spectroscopy (T-SESORS)[J]. Analyst,2019, 144(11): 3552-3555.
[82] [82] Schulmerich M V, Cole J H, Kreider J M, et al. Transcutaneous Raman Spectroscopy of Murine Bone In Vivo[J]. Applied Spectroscopy,2009, 63(3): 286-295.
[83] [83] Matousek P, Parker A W. Bulk Raman Analysis of Pharmaceutical Tablets[J]. Applied Spectroscopy,2006, 60(12): 1353-1357.
[84] [84] Ricci C, Eliasson C, Macleod N A, et al. Characterization of Genuine and Fake Artesunate Anti-malarial Tablets Using Fourier Transform Infrared Imaging and Spatially Offset Raman Spectroscopy through Blister Packs[J]. Analytical and Bioanalytical Chemistry,2007, 389(5): 1525-1532.
[85] [85] Mansouri M A, Sacre P Y, Coic L, et al. Quantitation of Active Pharmaceutical Ingredient through the Packaging using Raman Handheld Spectrophotometers: A Comparison Study[J]. Talanta,2020, 207: 120306.
[86] [86] Chao K L, Dhakal S, Qin J W, et al. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders[J]. Sensors,2017, 17(3): 618.
[87] [87] Eliasson C, Matousek P. Passive Signal Enhancement in Spatially Offset Raman Spectroscopy[J]. Journal of Raman Spectroscopy,2008, 39(5): 633-637.
[88] [88] Song S W, Kim J, Eum C, et al. Hyperspectral Raman Line Mapping as an Effective Tool To Monitor the Coating Thickness of Pharmaceutical Tablets[J]. Analytical Chemistry,2019, 91(9): 5810-5816.
[89] [89] BēRzi? K R, Fraser-Miller S J, Gordon K C. Pseudo-3D Subsurface Imaging of Pharmaceutical Solid Dosage Forms Using Micro-spatially Offset Low-Frequency Raman Spectroscopy[J]. Analytical Chemistry,2021, 93(25): 8986-8993.
[90] [90] Qin J W, Kim M S, Chao K L, et al. Subsurface Inspection of Food Safety and Quality Using Line-Scan Spatially Offset Raman Spectroscopy Technique[J]. Food Control,2017, 75: 246-254.
[91] [91] Lohumi S, Lee H, Kim M S, et al. Through-Packaging Analysis of Butter Adulteration Using Line-Scan Spatially Offset Raman Spectroscopy[J]. Analytical and Bioanalytical Chemistry,2018, 410(22): 5663-5673.
[92] [92] Ellis D I, Eccles R, Xu Y, et al. Through-Container, Extremely Low Concentration Detection of Multiple Chemical Markers of Counterfeit Alcohol Using a Handheld SORS Device[J]. Scientific Reports,2017, 7(1): 12082.
[93] [93] Qin J W, Chao K L, Kim M S. Investigation of Raman Chemical Imaging for Detection of Lycopene Lhanges in Tomatoes during Postharvest Ripening[J]. Journal of Food Engineering,2011, 107(3-4): 277-288.
[94] [94] Song S W, Jeong Y C, Park C R, et al. Quantitative Fat Analysis of Milk Using a Line-Illumination Spatially Offset Raman Probe through Carton Packaging[J]. Analyst,2023, 148(14): 3321-3329.
[95] [95] Conti C, Realini M, Colombo C, et al. Noninvasive Analysis of Thin Turbid Layers Using Microscale Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2015, 87(11): 5810-5815.
[96] [96] Conti C, Colombo C, Realini M, et al. Subsurface Raman Analysis of Thin Painted Layers[J]. Applied Spectroscopy,2014, 68(6): 686-691.
[97] [97] Conti C, Botteon A, Colombo C, et al. Investigation of Heterogeneous Painted Systems by Micro-Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2017, 89(21): 11476-11483.
[98] [98] Lux A, Realini M, Botteon A, et al. Advanced Portable micro-SORS Prototype Coupled with SERDS for Heritage Science[J]. Analyst,2024, 149(8): 2317-2327.
[99] [99] Botteon A, Conti C, Realini M, et al. Discovering Hidden Painted Images: Subsurface Imaging Using Microscale Spatially Offset Raman Spectroscopy[J]. Analytical Chemistry,2017, 89(1): 792-798.
[100] [100] Botteon A, Vermeulen M, Cristina L, et al. Advanced Microspatially Offset Raman Spectroscopy for Noninvasive Imaging of Concealed Texts and Figures Using Raman Signal, Fluorescence Emission, and Overall Spectral Intensity[J]. Analytical Chemistry,2024, 96(11): 4535-4543.
[101] [101] Bersani D, Conti C, Matousek P, et al. Methodological Evolutions of Raman Spectroscopy in Art and Archaeology[J]. Analytical Methods,2016, 8(48): 8395-8409.
[102] [102] Realini M, Conti C, Botteon A, et al. Development of a Full Micro-Scale Spatially Offset Raman Spectroscopy Prototype as a Portable Analytical Tool[J]. Analyst,2017, 142(2): 351-355.
[103] [103] Chiriu D, Desogus G, Pisu F A, et al. Beyond the Surface: Raman Micro-SORS for in Depth Non-Destructive Analysis of Fresco Layers[J]. Microchemical Journal,2020, 153: 104404.
[104] [104] Zachhuber B, Gasser C, Chrysostom E, et al. Stand-off Spatial Offset Raman Spectroscopy for the Detection of Concealed Content in Distant Objects[J]. Analytical Chemistry,2011, 83(24): 9438-9442.
[105] [105] Gupta N, Rodriguez J D, Yilmaz H. Through-Container Quantitative Analysis of Hand Sanitizers Using Spatially Offset Raman Spectroscopy[J]. Communications Chemistry,2021, 4(1): 126.
[106] [106] Hopkins R J, Pelfrey S H, Shand N C. Short-Wave Infrared Excited Spatially Offset Raman Spectroscopy (SORS) for through-Barrier Detection[J]. Analyst,2012, 137(19): 4408-4410.
[107] [107] Cletus B, Olds W, Fredericks P M, et al. Real-Time Detection of Concealed Chemical Hazards Under Ambient Light Conditions Using Raman Spectroscopy[J]. Journal of Forensic Science,2013, 58(4): 1008-1014.
[108] [108] Izake E L, Sundarajoo S, Olds W, et al. Standoff Raman Spectrometry for the Non-invasive Detection of Explosives Precursors in Highly Fluorescing Packaging[J]. Talanta,2013, 103: 20-27.
[109] [109] Gulia S, Gulati K K, Gambhir V, et al. Detection of Explosive Materials and Their Precursors through Translucent Commercial Bottles Using Spatially Offset Raman Spectroscopy Using Uxcitation Wavelength In Visible Range[J]. Optical Engineering,2019, 58(12): 127102.
[110] [110] Izake E L, Cletus B, Olds W, et al. Deep Raman Spectroscopy for the Non-invasive Standoff Detection of Concealed Chemical Threat Agents[J]. Talanta,2012, 94: 342-347.
[111] [111] Assi S, Abbas I, Tang L, et al. Evaluating the detection of cocaine and its impurities concealed inside fruit- and vegetable- food products using handheld spatially offset Raman spectroscopy[J]. Vibrational Spectroscopy,2024, 131: 103662.
[112] [112] Botteon A, Yiming J, Prati S, et al. Non-Invasive Characterisation of Molecular Diffusion of Agent into Turbid Matrix Using Micro-SORS[J]. Talanta,2020, 218: 121078.
[113] [113] Botteon A, Kim W H, Colombo C, et al. Non-destructive Monitoring of Dye Depth Profile in Mesoporous TiO2 Electrodes of Solar Cells with Micro-SORS[J]. Analytical Chemistry,2022, 94(6): 2966-2972.
Get Citation
Copy Citation Text
HU Yi, ZHONG Hang, LIU Ying, CHEN Jun, CHEN Jun. Recent progress in spatially offset Raman spectroscopy and its applications[J]. The Journal of Light Scattering, 2024, 36(3): 271
Category:
Received: May. 9, 2024
Accepted: Nov. 21, 2024
Published Online: Nov. 21, 2024
The Author Email: CHEN Jun (junchenspc@caep.cn)