Journal of Advanced Dielectrics, Volume. 12, Issue 3, 2250006(2022)

Modeling the effect of uniform and nonuniform dispersion of nanofillers on electrical tree propagation in polyethylene dielectric

Khola Azhar* and Salman Amin*
Author Affiliations
  • Electrical Engineering Department, University of Engineering and Technology, Taxila, Punjab 47080, Pakistan
  • show less
    References(58)

    [1] M. H. Ahmad et al. An overview of electrical tree growth in solid insulating material with emphasis of influencing factors, mathematical models and tree suppression. TELKOMNIKA Indones. J. Electr. Eng., 12, 5827(2014).

    [2] L. A. Dissado. Understanding electrical trees in solids: From experiment to theory. IEEE Trans. Dielectr. Electr. Insul., 9, 483(2002).

    [3] [3] H. Mcdonald, Ageing in epoxy resin as a precursor to electrical treeing, Ph.D. thesis, The University of Manchester, UK (2020).

    [4] C. S. K. Abdulah et al. Electrical tree investigation on solid insulation for high voltage applications. 2021 IEEE Symp. Industrial Electronics & Applications (ISIEA), 1-6(2021).

    [5] N. Shimizu, C. Laurent. Electrical tree initiation. IEEE Trans. Dielectr. Electr. Insul., 5, 651(1998).

    [6] A. L. Barclay, G. C. Stevens. Statistical and fractal characteristics of simulated electrical tree growth. 1992, Sixth Int. Conf. Dielectric Materials, Measurements and Applications, 17-20(1992).

    [7] Y. Zhou et al. Morphology of electrical trees in silicon rubber. J. Electrostat., 71, 440(2013).

    [8] A. S. Vaughan, S. J. Dodd, S. J. Sutton. A Raman microprobe study of electrical treeing in polyethylene. J. Mater. Sci., 39, 181(2004).

    [9] C. R. A. Kumar et al. Investigation into the failure of XLPE cables due to electrical treeing: A physico chemical approach. Polym. Test, 22, 313(2003).

    [10] S. Kumara, T. Hammarström, Y. V. Serdyuk. Polarity effect on electric tree inception in HVDC cable insulation. IEEE Trans. Dielectr. Electr. Insul., 28, 1819(2021).

    [11] G. M. Sahoo et al. Analysis of electrical tree growth in crossed link polyethylene cable insulation under different AC voltages. 2020 IEEE 9th Power India Int. Conf. (PIICON), 1-5(2020).

    [12] C. Zhang et al. Effect of bipolar square wave voltage with varied frequencies on electrical tree growth in epoxy resin. IEEE Trans. Dielectr. Electr. Insul., 28, 806(2021).

    [13] T. Hammarström, S. M. Gubanski. Detection of electrical tree formation in XLPE insulation through applying disturbed DC waveforms. IEEE Trans. Dielectr. Electr. Insul., 28, 1669(2021).

    [14] F. Esterl et al. Electrical treeing and partial discharges in DC-XLPE under constant DC voltage and repetitive DC ramp voltage. VDE High Voltage Technology 2020; ETG-Symp., 1-8(2020).

    [15] B. X. Du et al. Effects of harmonic component on electrical tree in EPDM for HVDC cable accessories insulation. IEEE Trans. Dielectr. Electr. Insul., 28, 578(2021).

    [16] L. Zhu, H. Li. Effect of harmonic superimposed DC voltage on electrical tree characteristics in XLPE. IEEE Trans. Appl. Supercond., 31, 1(2021).

    [17] J. V. Champion, S. J. Dodd. The effect of voltage and material age on the electrical tree growth and breakdown characteristics of epoxy resins. J. Phys. D, Appl. Phys., 28, 398(1995).

    [18] Y. Zhang et al. Electrical treeing behaviors in silicone rubber under an impulse voltage considering high temperature. Plasma Sci. Technol., 20, 54012(2018).

    [19] B. X. Du et al. Effect of ambient temperature on electrical treeing characteristics in silicone rubber. IEEE Trans. Dielectr. Electr. Insul., 18, 401(2011).

    [20] Q. Nie et al. Effect of frequency on electrical tree characteristics in silicone rubber. 2009 IEEE 9th Int. Conf. Properties and Applications of Dielectric Materials, 513-516(2009).

    [21] G. Chen, C. H. Tham. Electrical treeing characteristics in XLPE power cable insulation in frequency range between 20 and 500 Hz. IEEE Trans. Dielectr. Electr. Insul., 16, 179(2009).

    [22] M. Abderrahman. Investigation of electrical treeing in perspex material. Appl. Res. Smart Technol., 2, 1(2021).

    [23] S. Chen et al. The importance of particle dispersion in electrical treeing and breakdown in nano-filled epoxy resin. Int. J. Electr. Power Energy Syst., 129, 106838(2021).

    [24] N. S. Mansor et al. Study on the dielectric performance of XLPE nanocomposite against the electrical tree propagation. 2020 Int. Symp. Electrical Insulating Materials (ISEIM), 375-378(2020).

    [25] S. Chandrasekar, S. Purushotham, G. C. Montanari. Investigation of electrical tree growth characteristics in XLPE nanocomposites. IEEE Trans. Dielectr. Electr. Insul., 27, 558(2020).

    [26] T. J. Mohamed, S. R. Faraj, H. K. Judran. Electrical treeing behavior in XLPE insulation due to content AL2O3 nanoparticles. J. Phys., Conf. Ser., 1973, 12010(2021).

    [27] N. S. Mansor et al. Effect of ZnO nanofiller in the XLPE matrix on electrical tree characteristics. IEEE Access, 8, 117574(2020).

    [28] X. Zhu et al. Characteristics of partial discharge and AC electrical tree in XLPE and MgO/XLPE nanocomposites. IEEE Trans. Dielectr. Electr. Insul., 27, 450(2020).

    [29] S. Chen et al. Electrical tree growth in microsilica-filled epoxy resin. IEEE Trans. Dielectr. Electr. Insul., 27, 820(2020).

    [30] C. Kalaivanan, S. Chandrasekar. A study on the influence of SiO2 nano particles on the failure of XLPE underground cables due to electrical treeing. J. Electr. Eng. Technol., 14, 2447(2019).

    [31] Y. Nyanteh et al. Overview of simulation models for partial discharge and electrical treeing to determine feasibility for estimation of remaining life of machine insulation systems. 2011 Electrical Insulation Conf. (EIC), 327-332(2011).

    [32] J. C. Pandey, N. Gupta. Study of treeing in epoxy-alumina nanocomposites using electroluminescence. IEEE Trans. Dielectr. Electr. Insul., 26, 648(2019).

    [33] T. Imai et al. Influence of temperature on mechanical and insulation properties of epoxy-layered silicate nanocomposite. IEEE Trans. Dielectr. Electr. Insul., 13, 445(2006).

    [34] Y. Chen et al. Tree initiation phenomena in nanostructured epoxy composites. IEEE Trans. Dielectr. Electr. Insul., 17, 1509(2010).

    [35] S. Raetzke et al. Tree initiation characteristics of epoxy resin and epoxy/clay nanocomoposite. IEEE Trans. Dielectr. Electr. Insul., 16, 1473(2009).

    [36] C. Nyamupangedengu, D. R. Cornish. Time-evolution phenomena of electrical tree partial discharges in magnesia, silica and alumina epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul., 23, 85(2016).

    [37] W. Wang, Y. Yang. The synergistic effects of the micro and nano particles in micro-nano composites on enhancing the resistance to electrical tree degradation. Sci. Rep., 7, 1(2017).

    [38] S. Alapati, M. J. Thomas. Electrical treeing and the associated PD characteristics in LDPE nanocomposites. IEEE Trans. Dielectr. Electr. Insul., 19, 697(2012).

    [39] J. Wu et al. Characteristics of initial trees of 30 to 60 μm length in epoxy/silica nanocomposite. IEEE Trans. Dielectr. Electr. Insul., 19, 312(2012).

    [40] X. Zhang et al. Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv. Mater., 28, 2055(2016).

    [41] A. L. Barclay et al. Stochastic modelling of electrical treeing: Fractal and statistical characteristics. J. Phys. D, Appl. Phys., 23, 1536(1990).

    [42] H. J. Wiesmann, H.R. Zeller. A fractal model of dielectric breakdown and prebreakdown in solid dielectrics. J. Appl. Phys., 60, 1770(1986).

    [43] H. R. Zeller. Breakdown and prebreakdown phenomena in solid dielectrics. IEEE Trans. Electr. Insul., EI-22, 115-122(1987).

    [44] T. Farr, R. Vogelsang, K. Frohlich. A new deterministic model for tree growth in polymers with barriers. 2001 Annual Report Conf. Electrical Insulation and Dielectric Phenomena (Cat. No. 01CH37225), 673-676(2001).

    [45] G. Bahder et al. Physical model of electric aging and breakdown of extruded pplymeric insulated power cables. IEEE Trans. Power Appar. Syst., PAS-101, 1379-1390(1982).

    [46] L. A. Dissado, P. J. J. Sweeney. An analytical model for discharge generated breakdown structures. [1992] Proc. 4th Int. Conf. Conduction and Breakdown in Solid Dielectrics, 328-332(1992).

    [47] J. Champion, V , S. J. Dodd, G. C. Stevens. Analysis and modelling of electrical tree growth in synthetic resins over a wide range of stressing voltage. J. Phys. D, Appl. Phys., 27, 1020(1994).

    [48] J. M. Rodríguez-Serna, R. Albarracín-Sánchez, I. Carrillo. An improved physical-stochastic model for simulating electrical tree propagation in solid polymeric dielectrics. Polymers (Basel), 12, 1768(2020).

    [49] Z. Cai et al. Electrical treeing: A phase-field model. Extreme Mech. Lett., 28, 87(2019).

    [50] F. Noto, N. Yoshimura. Voltage and frequency dependence of tree growth in polyethylene. Conf. Electrical Insulation & Dielectric Phenomena-Annual Report 1974, 207-217(1974).

    [51] S. J. Dodd. A deterministic model for the growth of non-conducting electrical tree structures. J. Phys. D, Appl. Phys., 36, 129(2002).

    [52] M. Noskov et al. Computer simulation of discharge channel propagation in solid dielectric. ICSD’01. Proc. 2001 IEEE 7th Int. Conf. Solid Dielectrics (Cat. No. 01CH37117), 465-468(2001).

    [53] W. Hong, K. C. Pitike. Modeling breakdown-resistant composite dielectrics. Procedia IUTAM, 12, 73(2015).

    [54] M.-X. Zhu et al. A phase field model for the propagation of electrical tree in nanocomposites. IEEE Trans. Dielectr. Electr. Insul., 27, 336(2020).

    [55] P. Divya, P. Preetha. Influence of nanoparticles on electrical treeing in epoxy based dielectrics. 2021 IEEE Region 10 Symp. (TENSYMP), 1-5(2021).

    [56] Z. Mi et al. Phase field modeling of dielectric breakdown of ferroelectric polymers subjected to mechanical and electrical loadings. Int. J. Solids Struct., 217, 123(2021).

    [57] Z. Cai et al. Dielectric breakdown behavior of ferroelectric ceramics: The role of pores. J. Eur. Ceram. Soc., 41, 2533(2021).

    [58] K. Chaitanya Pitike, W. Hong. Phase-field model for dielectric breakdown in solids. J. Appl. Phys., 115, 44101(2014).

    Tools

    Get Citation

    Copy Citation Text

    Khola Azhar, Salman Amin. Modeling the effect of uniform and nonuniform dispersion of nanofillers on electrical tree propagation in polyethylene dielectric[J]. Journal of Advanced Dielectrics, 2022, 12(3): 2250006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 4, 2022

    Accepted: Apr. 28, 2022

    Published Online: Nov. 1, 2022

    The Author Email: Azhar Khola (khola.azhar25@gmail.com), Amin Salman (khola.azhar25@gmail.com)

    DOI:10.1142/S2010135X22500060

    Topics