NUCLEAR TECHNIQUES, Volume. 48, Issue 7, 070019(2025)

Numerical simulation of thermal stratification characteristics in the upper plenum chamber of lead-based fast reactors

Yue WANG1,2, Xuanming LIU1,2, Fengchen LI3, Hongna ZHANG3, Shuqi MENG4, Xin WANG4, Yulong MAO4, Qian LI1,2, and Weihua CAI1,2、*
Author Affiliations
  • 1Laboratory of Thermo-Fluid Science and Nuclear Engineering, Northeast Electric Power University, Jilin 132012, China
  • 2School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
  • 3School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
  • 4China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518000, China
  • show less
    Figures & Tables(15)
    1/6 upper plenum chamber structural model and 1/6 core outlet channel distribution (a) Main view, (b) Core outlet channel
    Temperature point monitoring arrangement in the upper plenum chamber (color online)
    Computational grid of 1/6 upper plenum chamber structure
    The variation of liquid sodium's temperature and mass flow rate at the core typical outlet with time (color online)(a) Temperature, (b) Mass flow rate
    The deviation between the simulated and experimental results of liquid sodium temperature at four different vertical heights (color online)
    The variation of temperature and velocity at the core typical outlet with time (color online) (a) Temperature, (b) Velocity
    Temperature and velocity distribution of LBE at vertical and horizontal planes (color online) (a) Temperature, (b) Velocity
    Temperature distribution of LBE in the upper plenum chamber at different times (color online)(a) 60 s, (b) 120 s, (c) 180 s, (d) 240 s, (e) 300 s, (f) 400 s
    Velocity and streamlines at different times (color online) (a) 120 s, (b) 240 s
    Velocity vector at small holes (t=240 s, color online) (a) Lower inner hole, (b) Upper inner hole
    Transient temperature distribution of LBE in the vertical direction (color online) (a) 120~240 s, (b) 300~600 s
    Temperature variation of LBE at different heights (color online) (a) Lower region of the small hole, (b) Upper region of the small hole
    Position variation of thermal stratification interface
    • Table 1. Physical parameters of liquid lead-bismuth

      View table
      View in Article

      Table 1. Physical parameters of liquid lead-bismuth

      物理量Quantity公式Formula
      密度Density / kg∙m-3ρ=11 096-1.323 6T
      导热系数Thermal conductivity / W∙m-1∙K-1λ=3.61+1.517×10-2T-1.741×10-6T2
      动力黏度Dynamic viscosity / Pa∙sμ=4.94×10-4exp754.1/T
      比热Heat capacity / J∙kg-1∙K-1cp=159-2.72×10-2T+7.12×10-6T2
      体胀系数Volumetric thermal-expansion coefficient / K-1α=1/8 383.2-T
    • Table 2. Grid independence verification results

      View table
      View in Article

      Table 2. Grid independence verification results

      网格单元数

      Total gird cells number / 万

      出口平均温度

      Average export temperature / K

      120755.04
      230755.20
      340754.98
      410754.96
      510755.04
    Tools

    Get Citation

    Copy Citation Text

    Yue WANG, Xuanming LIU, Fengchen LI, Hongna ZHANG, Shuqi MENG, Xin WANG, Yulong MAO, Qian LI, Weihua CAI. Numerical simulation of thermal stratification characteristics in the upper plenum chamber of lead-based fast reactors[J]. NUCLEAR TECHNIQUES, 2025, 48(7): 070019

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue on The First Academic Annual Conference of the Research Reactor and Innovative Reactor Association of Chinese Nuclear Society and Advanced Nuclear Power System Reactor Engineering

    Received: Dec. 24, 2024

    Accepted: --

    Published Online: Sep. 15, 2025

    The Author Email: Weihua CAI (CAIWeihua)

    DOI:10.11889/j.0253-3219.2025.hjs.48.240536

    Topics