Chinese Journal of Lasers, Volume. 36, Issue 2, 269(2009)
Research and Progress of Silicon Luminescence
[1] [1] S. Ossicini, L. Pavesi, F. Priolo. Light Emitting Silicon for Microphotonics[M]. Heidelberg: Springer Press, 2003
[2] [2] P. Ball. Let there be light[J]. Nature, 2001, 409:974~976
[3] [3] Xia Jianbai. Silicon luminescence research[J]. Chinese J. Semiconductor, 1998, 19(5):321~326
[4] [4] L. Pavesi. Routes toward silicon-based lasers[J]. Mat. Today, 2005, 8:18~25
[5] [5] L. T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Appl. Phys. Lett., 1990, 57:1046~1048
[6] [6] A. G. Cullis, L. T. Canham, P. D. J. Calcott. The structural and luminescence properties of porous silicon[J]. J. Appl. Phys.,1997, 82(3): 909~965
[7] [7] A. G. Cullis, L. T. Canham. Visible light emission due to quantum size effects in highly porous crystalline silicon[J]. Nature, 1991, 353: 335~338
[8] [8] G. G. Qin, Y. Q. Jia. Mechanism of the visible luminescence in porous silicon[J]. Solid State Commun., 1993, 86:559~563
[9] [9] X. Wang, G. Shi, F. L. Zhang et al.. Critical conditions for achieving blue light emission from porous silicon[J]. Appl. Phys. Lett., 1993, 63: 2363~2365
[10] [10] X. Wang, D. M. Huang, L. Ye et al.. Pinning of photoluminescence peak positions for light-emitting porous silicon: an evidence of quantum size effect[J]. Phys. Rev. Lett., 1993, 71:1265~1267
[11] [11] G. Qin, G. G. Qin. Theory on the quantum confinement-luminescence center model for nanocrystalline and porous Si[J]. J. Appl. Phys., 1997, 82(5):2572~2579
[12] [12] M. V. Wolkin, J. Jorne, P. M. Fauchet et al.. Electronic states and luminescence in porous silicon quantum dots: The role of oxygen[J].Phys. Rev. Lett., 1999, 82(1):197~200
[13] [13] T. Shimizu-Iwayama, K. Fujita, S. Nakao et al.. Visible photoluminescence in Si+ -implanted silica glass[J]. J. Appl. Phys., 1994, 75(12):7779~7783
[14] [14] S. Charvet, R. Madelon, F. Gourbilleau et al.. Ellipsometric spectroscopy study of photoluminescent Si/SiO2 systems obtained by magnetron co-sputtering[J]. J. Luminescence, 1999, 80:257~261
[15] [15] V. Vinciguerra, G. Franzò, F. Priolo et al.. Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices[J]. J. Appl. Phys., 2000, 87(11):8165~8173
[17] [17] Z. H. Lu, D. J. Lockwood, J.M. Baribeau. Quantum confinement and light emission in SiO2/Si superlattices[J]. Nature, 1995, 378:258~260
[18] [18] T. Orii, M. Hirasawa, T. Seto. Tunable narrow-band light emission from size-selected Si nanoparticles produced by pulsed-laser ablation[J]. Appl. Phys. Lett., 2003, 83(16):3395 ~3397
[19] [19] M. Zacharias, J. Heitmann, R. Scholz et al.. Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach[J]. Appl. Phys. Lett., 2002, 80:661~663
[20] [20] J. Heitmann, F. Mueller, M. Zacharias et al.. Silicon nanocrystals: size matters[J]. Adv. Mat., 2005, 17(7):795~803
[21] [21] C. Delerue, G. Allan, M. Lannoo. Theoretical aspects of the luminescence of porous silicon[J]. Phys. Rev. B, 1993, 48: 11024~11036
[22] [22] D. Kovalev, H. Heckler, M. Ben-Chorin et al.. Breakdown of the k-conservation rule in Si nanocrystals[J]. Phys. Rev. Lett., 1998, 81(13): 2803~2806
[23] [23] J. Heitmann, F. Müller, L. Yi et al.. Excitons in Si nanocrystals: Confinement and migration effects[J].Phys. Rev. B, 2004, 69:195309
[24] [24] G. Ledoux, J. Gong, F. Huisken et al.. Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement[J]. Appl. Phys. Lett., 2002, 80:4834~4836
[25] [25] G. G. Qin, Y. J. Li. Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide[J]. Phys. Rev. B, 2003, 68: 085309
[26] [26] J. B. Xia, K. W. Cheah. Effects of surface-bond saturation on the luminescence of silicon nanocrystals[J]. Phys. Rev. B, 1999, 59:14876~14879
[27] [27] L. Pavesi, L. Dal Negro, C. Mazzoleni et al.. Optical gain in silicon nanocrystals[J]. Nature, 2000, 408:440~444
[28] [28] L. Dal Negro, M. Cazzanelli, B. Danese et al.. Light amplification in silicon nanocrystals by pump and probe transmission measurements[J]. J. Appl. Phys., 2004, 96(10):5747~5755
[29] [29] R. G. Elliman, M. J. Lederer, N. Smith et al.. The fabrication and properties of silicon-nanocrystal-based devices and structures produced by ion implantation the search for gain[J]. Nucl. Instr. and Meth. in Phys. Res. B, 2003, 206:427~431
[30] [30] F. Iacona, G. Franzò, E. C. Moreira et al.. Silicon nanocrystals and Er3+ ions in an optical microcavity[J]. J. Appl. Phys., 2001, 89(12):8354~8356
[31] [31] G. Franzò, A. Irrera, E. C. Moreira et al.. Electroluminescence of silicon nanocrystals in MOS structures[J]. Appl. Phys. A, 2002, 74(1):1~5
[32] [32] R. J. Walters, G. I. Bourianoff, H. A. Atwater. Field-effect electroluminescence in silicon nanocrystals[J]. Nature. Mat., 2005, 4:143~146
[34] [34] Wei Wei, Xiaowei Wu, Shaojun Fu et al.. Fabrication of SiO2 microdisk optical resonator[J]. Chin. Opt.Lett., 2007,5(12): 703~705
[36] [36] R. J. Zhang, S. Y. Seo, A. P. Milenin et al.. Visible range whispering-gallery mode in microdisk array based on size-controlled Si nanocrystals[J]. Appl. Phys. Lett., 2006, 88:153120
[37] [37] F. Priolo, G. Franzò, S. Coffa.et al.. Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si[J]. Phys. Rev. B, 1998, 57(8):4443~4445
[38] [38] F. Priolo, G. Franzò, F. Iacona et al.. Excitation and non-radiative de-excitation processes in Er-doped Si nanocrystals[J]. Mat. Sci. and Eng. B, 2001, 81:9~15
[39] [39] G. Franzò, D. Pacifici, V. Vinciguerra et al.. Er3+ ions - Si nanocrystals interactions and their effects on the luminescence properties[J]. Appl. Phys. Lett., 2000, 76(16):2167~2169
[40] [40] M. Falconieri, E. Borsella, L. De Dominicis et al.. Probe of the Si nanoclusters to Er3+ energy transfer dynamics by double-pulse excitation[J]. Appl. Phys. Lett., 2005, 87:061109
[41] [41] E. Borsella, M. Falconieri, F. Gourbilleau et al.. On the photoluminescence from Si nanocrystals in Er-doped silica by a double-pulse technique[J]. Appl. Phys. Lett., 2006, 89:041120
[42] [42] F. Priolo, G. Franzò, D. Pacifici et al.. Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals[J]. J. Appl. Phys., 2001, 89(1):264~272
[43] [43] H. S. Han, S. Y. Seo, J. H. Shin. Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier[J]. Appl. Phys. Lett., 2002, 81(20):3720~3722
[44] [44] F. Iacona, D. Pacifici, A. Irrera et al.. Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices[J]. Appl. Phys. Lett., 2002, 81(17):3242~3244
[45] [45] A. Polman, B. Min, J. Kalkman et al.. Ultralow-threshold erbium-implanted toroidal microlaser on silicon[J]. Appl. Phys. Lett., 2004, 84(7):1037~1039
[46] [46] H. Rong, A. Liu, R. Jones et al.. An all-silicon Raman laser[J]. Nature, 2005, 433:292~294
[47] [47] T. K. Lianga, H. K. Tsang. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides[J]. Appl. Phys. Lett., 2004, 84(15): 2745~2747
[48] [48] H. Rong, S. Xu, Y. H. Kuo et al.. Low-threshold continues-wave Raman silicon laser[J]. Nature Photonics, 2007, 1:232~237
[49] [49] L. Ding, T. P. Chen, Y. Liu et al.. Optical properties of silicon nanocrystals embedded in a SiO2 matrix[J]. Phys. Rev. B, 2005, 72:125419
[50] [50] H. -Ch. Weissker, J. Furthmüller, F. Bechstedt. Optical properties of Ge and Si nanocrystals from ab initio calculations. I. Embedded nanocrystallites[J]. Phys. Rev. B, 2002,65:155327
[51] [51] S. Z. Feng, R. J. Zhang, Y. X. Zheng et al.. Spectroscopic ellipsometric study of size-controlled silicon nano-crystal in SiO2 composite film[J]. Journal of the Korean Physical Society, 2007,51(4):1593~1597
Get Citation
Copy Citation Text
Zhang Rongjun, Chen Yiming, Zheng Yuxiang, Chen Liangyao. Research and Progress of Silicon Luminescence[J]. Chinese Journal of Lasers, 2009, 36(2): 269