Journal of Advanced Dielectrics, Volume. 15, Issue 1, 2450013(2025)
Dielectric relaxation in BaTiO3–Bi(Zn
[1] H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang, S. Lan, Y. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S. Zhang, L.-Q. Chen, Y.-H. Lin, C.-W. Nan. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science, 365, 578(2019).
[2] X. Hao. A review on the dielectric materials for high energy-storage application. J. Adv. Dielect., 3, 1330001(2013).
[3] Q. Hu, L. Jin, T. Wang, C. Li, Z. Xing, X. Wei. Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1∕2Ti1∕2)O3 bulk ceramics. J. Alloys Compd., 640, 416(2015).
[4] Q. Wang, P.-M. Gong, C.-M. Wang. High recoverable energy storage density and large energy efficiency simultaneously achieved in BaTiO3–Bi(Zn1∕2Zr1∕2)O3 relaxor ferroelectrics. Ceram. Int., 46, 22452(2020).
[5] W.-B. Li, D. Zhou, L.-X. Pang. Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics. Appl. Phys. Lett., 110, 132902(2017).
[6] X. Guo, Y. P. Pu, W. Wang, J. M. Ji, J. W. Li, R. K. Shi, M. D. Yang. Ultrahigh energy storage performance and fast charge-discharge capability in Dy-modified SrTiO3 linear ceramics with high optical transmissivity by defect and interface engineering. Ceram. Int., 46, 21719(2020).
[7] Y. Zhang, W. Li, S. Xu, Z. Wang, Y. Zhao, J. Li, W. Fei. Interlayer coupling to enhance the energy storage performance of Na0.5Bi0.5TiO3–SrTiO3 multilayer films with the electric field amplifying effect. J. Mater. Chem. A, 6, 24550(2018).
[8] P. Debye. Einige Resultate einer kinetischen theorie der isolatoren. Phys. Z., 13, 97(1912).
[9] K. S. Cole, R. H. Cole. Dispersion and absorption in dielectrics i. alternating current characteristics. J. Chem. Phys., 9, 341(1941).
[10] D. W. Davidson, R. H. Cole. Dielectric relaxation in glycerine. J. Chem. Phys., 18, 1417(2004).
[11] S. Havriliak, S. Negami. A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci. C: Polym. Lett., 14, 99(1966).
[12] A. K. Jonscher. Dielectric Relaxation in Solids(1983).
[13] C. L. Wang. Jonscher indices for dielectric materials. J. Adv. Dielect., 9, 1950046(2019).
[14] A. Stanislavsky, K. Weron, J. Trzmiel. Subordination model of anomalous diffusion leading to the two-power-law relaxation responses. Europhys. Lett., 91, 40003(2010).
[15] A. Jurlewicz, J. Trzmiel, K. Weron. Two-power-law relaxation processes in complex materials. Acta Phys. Pol. B, 41, 1001(2010).
[16] J. Trzmiel, A. Jurlewicz, K. Weron. The frequency-domain relaxation response of gallium doped Cd1−xMnxTe. J. Phys.: Condens. Matter, 22, 095802(2010).
[17] J. Trzmiel, T. Marciniszyn, J. Komar. Generalized Mittag–Leffler relaxation of NH4H2PO4: Porous glass composite. J. Non-Cryst. Solids, 357, 1791(2011).
[18] R. Garrappa, F. Mainardi, G. Maione. Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal., 19, 1105(2016).
[19] E. J. Marksz, A. M. Hagerstrom, X. Zhang, N. Al Hasan, J. Pearson, J. A. Drisko, J. C. Booth, C. J. Long, I. Takeuchi, N. D. Orloff. Broadband, High-frequency permittivity characterization for epitaxial Ba1−xSrxTiO3 composition-spread thin films. Phys. Rev. Appl., 15, 064061(2021).
[20] A. Maslovskaya, L. Moroz. Time-fractional Landau–Khalatnikov model applied to numerical simulation of polarization switching in ferroelectrics. Nonlinear Dyn., 111, 4543(2023).
[21] L. I. Moroz, T. K. Barabash, A. G. Maslovskaya. Numerical simulation of polarization switching kinetics in ferroelectrics based on fractional Kolmogorov–Avrami model. J. Phys.: Conf. Ser., 2514, 012016(2023).
[22] R. R. Nigmatullin. Detection of collective motions in dielectric spectra and the meaning of the generalized Vogel–Fulcher–Tamman equation. Physica B, 404, 255(2009).
[23] A. A. Khamzin, R. R. Nigmatullin, I. I. Popov. Log-periodic corrections to the Cole–Cole expression in dielectric relaxation. Physica A, 392, 136(2013).
[24] A. A. Khamzin, R. R. Nigmatullin, I. I. Popov, B. A. Murzaliev. Microscopic model of dielectric α-relaxation in disordered media. Fract. Calc. Appl. Anal., 16, 158(2013).
[25] A. A. Khamzin, R. R. Nigmatullin, I. I. Popov. Justification of the empirical laws of the anomalous dielectric relaxation in the framework of the memory function formalism. Fract. Calc. Appl. Anal., 17, 247(2014).
[26] A. A. Khamzin, I. I. Popov, R. R. Nigmatullin. The influence of the secondary relaxation processes on the structural relaxation in glass-forming materials. J. Chem. Phys., 138, 244502(2013).
[27] A. A. Khamzin, I. I. Popov, R. R. Nigmatullin. Correction of the power law of ac conductivity in ion-conducting materials due to the electrode polarization effect. Phys. Rev. E, 89, 032303(2014).
Get Citation
Copy Citation Text
Qian Wang, Jian-Hong Hu, Jun-Yi Liu, Chun-Ming Wang, Chun-Lei Wang. Dielectric relaxation in BaTiO3–Bi(Zn
Category: Research Articles
Received: Feb. 2, 2024
Accepted: May. 9, 2024
Published Online: Feb. 18, 2025
The Author Email: Wang Chun-Ming (wangcm@sdu.edu.cn), Wang Chun-Lei (wangcl@sdu.edu.cn)