Acta Optica Sinica, Volume. 44, Issue 7, 0716002(2024)

Numerical Simulation of Temperature Distribution in End-Pumped Nd∶YAG with Uniform and Gradient Dopants of Nd3+

Fangfang Ruan1, Fangying Tang2, Jinhong Wang2, Lü Yanfei2, Jiawei Li2, Xinxin Wang2, Yuhui Yan2, Liangbi Su3、*, and Lihe Zheng2、**
Author Affiliations
  • 1School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, Zhejiang , China
  • 2Key Laboratory of Yunnan Provincial Higher Education Institutions for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University, Kunming 650500, Yunnan , China
  • 3Artificial Crystals Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • show less
    References(22)

    [1] Li Z Y, Leng Y X, Li R X. Further development of the short-pulse petawatt laser: trends, technologies, and bottlenecks[J]. Laser & Photonics Reviews, 17, 2100705(2023).

    [2] Hou Y Y, Dong H L, Jia Z G et al. Effect of composition step-graded InGaN barriers on photoelectric performance of green laser diode[J]. Journal of Synthetic Crystals, 52, 1386-1393(2023).

    [3] Guo J, Liu J, Chen P et al. Growth and spectral properties of Nd∶CaYAlO4 single crystal fibers[J]. Journal of Synthetic Crystals, 52, 1345-1351(2023).

    [4] Zhang K, Yan F P, Han W G et al. Theoretical study of pumping method of high power Tm3+-doped fiber amplifier for thermal effect management[J]. Chinese Journal of Luminescence, 41, 839-848(2020).

    [5] Yang H M, Feng G Y, Zhou S H. Thermal effects in high-power Nd∶YAG disk-type solid state laser[J]. Optics & Laser Technology, 43, 1006-1015(2011).

    [6] Wu J H, Du S F, Gao Y et al. Compact and efficient hundred-watt level 2 μm rod Tm∶YAG laser[J]. Chinese Journal of Luminescence, 44, 2027-2032(2023).

    [7] Lin Y H, Tang Z L, Zhang Z T et al. Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors[J]. Journal of the European Ceramic Society, 23, 175-178(2003).

    [8] Kenyon A J. Recent developments in rare-earth doped materials for optoelectronics[J]. Progress in Quantum Electronics, 26, 225-284(2002).

    [9] Zheng L H, Zhao J B, Wang Y X et al. Mid-IR optical property of Dy: CaF2-SrF2 crystal fabricated by multicrucible temperature gradient technology[J]. Crystals, 11, 907(2021).

    [10] Dong J Y, Cui J W, Wen Y et al. High-effective mitigation of thermal effect in multi segment and multi concentration (MSMC) Tm∶YAG crystal[J]. Infrared Physics & Technology, 122, 104104(2022).

    [11] Wilhelm R, Frede M, Kracht D. Power scaling of end-pumped solid-state rod lasers by longitudinal dopant concentration gradients[J]. IEEE Journal of Quantum Electronics, 44, 232-244(2008).

    [12] Stroganova E V, Galutskiy V V, Tkachev D S et al. Increasing pumping efficiency by using gradient-doped laser crystals[J]. Optics and Spectroscopy, 117, 984-989(2014).

    [13] Ito M, Hraiech S, Goutaudier C et al. Growth of Yb3+-doped KY3F10 concentration gradient crystal fiber by laser-heated pedestal growth (LHPG) technique[J]. Journal of Crystal Growth, 310, 140-144(2008).

    [14] Laversenne L, Goutaudier C, Guyot Y et al. Growth of rare earth (RE) doped concentration gradient crystal fibers and analysis of dynamical processes of laser resonant transitions in RE-doped Y2O3 (RE=Yb3+, Er3+, Ho3+)[J]. Journal of Alloys and Compounds, 341, 214-219(2002).

    [15] Boulon G, Laversenne L, Goutaudier C et al. Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers[J]. Journal of Luminescence, 102/103, 417-425(2003).

    [16] Wei M E, Cheng T Q, Dou R Q et al. Superior performance of a 2 kHz pulse Nd∶YAG laser based on a gradient-doped crystal[J]. Photonics Research, 9, 1191-1196(2021).

    [17] Wang H R, Wang J L, Li P L et al. Simulation and optimization of heat dissipation in slab laser amplifier based on microchannel heat sink[J]. Chinese Journal of Lasers, 50, 0701002(2023).

    [18] Yu S E, Yang W D, Li H J. Research on the structure of an optical tomography sensor based on numerical simulations[J]. Laser & Optoelectronics Progress, 59, 2228001(2022).

    [19] Liu Y Q, Liu K Y, Li Z Y et al. Coherently tiled Ti∶sapphire laser amplification: a way to break the 10 petawatt limit on current ultraintense lasers[J]. Advanced Photonics Nexus, 2, 066009(2023).

    [20] Hou L Q, Zu J F, Dong Y et al. Comparison of laser characteristics of neodymium doped glass, YAG and GGG operating in heat capacity mode[J]. High Power Laser and Particle Beams, 18, 881-885(2006).

    [21] Zheng L H, Kausas A, Taira T. >MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser[J]. Optics Express, 24, 28748-28760(2016).

    [22] Fan T Y. Heat generation in Nd∶YAG and Yb∶YAG[J]. IEEE Journal of Quantum Electronics, 29, 1457-1459(1993).

    Tools

    Get Citation

    Copy Citation Text

    Fangfang Ruan, Fangying Tang, Jinhong Wang, Lü Yanfei, Jiawei Li, Xinxin Wang, Yuhui Yan, Liangbi Su, Lihe Zheng. Numerical Simulation of Temperature Distribution in End-Pumped Nd∶YAG with Uniform and Gradient Dopants of Nd3+[J]. Acta Optica Sinica, 2024, 44(7): 0716002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Dec. 16, 2023

    Accepted: Jan. 21, 2024

    Published Online: Apr. 11, 2024

    The Author Email: Su Liangbi (suliangbi@mail.sic.ac.cn), Zheng Lihe (zhenglihe@ynu.edu.cn)

    DOI:10.3788/AOS231944

    Topics