Acta Optica Sinica, Volume. 44, Issue 7, 0716002(2024)
Numerical Simulation of Temperature Distribution in End-Pumped Nd∶YAG with Uniform and Gradient Dopants of Nd3+
[1] Li Z Y, Leng Y X, Li R X. Further development of the short-pulse petawatt laser: trends, technologies, and bottlenecks[J]. Laser & Photonics Reviews, 17, 2100705(2023).
[2] Hou Y Y, Dong H L, Jia Z G et al. Effect of composition step-graded InGaN barriers on photoelectric performance of green laser diode[J]. Journal of Synthetic Crystals, 52, 1386-1393(2023).
[3] Guo J, Liu J, Chen P et al. Growth and spectral properties of Nd∶CaYAlO4 single crystal fibers[J]. Journal of Synthetic Crystals, 52, 1345-1351(2023).
[4] Zhang K, Yan F P, Han W G et al. Theoretical study of pumping method of high power Tm3+-doped fiber amplifier for thermal effect management[J]. Chinese Journal of Luminescence, 41, 839-848(2020).
[5] Yang H M, Feng G Y, Zhou S H. Thermal effects in high-power Nd∶YAG disk-type solid state laser[J]. Optics & Laser Technology, 43, 1006-1015(2011).
[6] Wu J H, Du S F, Gao Y et al. Compact and efficient hundred-watt level 2 μm rod Tm∶YAG laser[J]. Chinese Journal of Luminescence, 44, 2027-2032(2023).
[7] Lin Y H, Tang Z L, Zhang Z T et al. Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors[J]. Journal of the European Ceramic Society, 23, 175-178(2003).
[8] Kenyon A J. Recent developments in rare-earth doped materials for optoelectronics[J]. Progress in Quantum Electronics, 26, 225-284(2002).
[9] Zheng L H, Zhao J B, Wang Y X et al. Mid-IR optical property of Dy: CaF2-SrF2 crystal fabricated by multicrucible temperature gradient technology[J]. Crystals, 11, 907(2021).
[10] Dong J Y, Cui J W, Wen Y et al. High-effective mitigation of thermal effect in multi segment and multi concentration (MSMC) Tm∶YAG crystal[J]. Infrared Physics & Technology, 122, 104104(2022).
[11] Wilhelm R, Frede M, Kracht D. Power scaling of end-pumped solid-state rod lasers by longitudinal dopant concentration gradients[J]. IEEE Journal of Quantum Electronics, 44, 232-244(2008).
[12] Stroganova E V, Galutskiy V V, Tkachev D S et al. Increasing pumping efficiency by using gradient-doped laser crystals[J]. Optics and Spectroscopy, 117, 984-989(2014).
[13] Ito M, Hraiech S, Goutaudier C et al. Growth of Yb3+-doped KY3F10 concentration gradient crystal fiber by laser-heated pedestal growth (LHPG) technique[J]. Journal of Crystal Growth, 310, 140-144(2008).
[14] Laversenne L, Goutaudier C, Guyot Y et al. Growth of rare earth (RE) doped concentration gradient crystal fibers and analysis of dynamical processes of laser resonant transitions in RE-doped Y2O3 (RE=Yb3+, Er3+, Ho3+)[J]. Journal of Alloys and Compounds, 341, 214-219(2002).
[15] Boulon G, Laversenne L, Goutaudier C et al. Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers[J]. Journal of Luminescence, 102/103, 417-425(2003).
[16] Wei M E, Cheng T Q, Dou R Q et al. Superior performance of a 2 kHz pulse Nd∶YAG laser based on a gradient-doped crystal[J]. Photonics Research, 9, 1191-1196(2021).
[17] Wang H R, Wang J L, Li P L et al. Simulation and optimization of heat dissipation in slab laser amplifier based on microchannel heat sink[J]. Chinese Journal of Lasers, 50, 0701002(2023).
[18] Yu S E, Yang W D, Li H J. Research on the structure of an optical tomography sensor based on numerical simulations[J]. Laser & Optoelectronics Progress, 59, 2228001(2022).
[19] Liu Y Q, Liu K Y, Li Z Y et al. Coherently tiled Ti∶sapphire laser amplification: a way to break the 10 petawatt limit on current ultraintense lasers[J]. Advanced Photonics Nexus, 2, 066009(2023).
[20] Hou L Q, Zu J F, Dong Y et al. Comparison of laser characteristics of neodymium doped glass, YAG and GGG operating in heat capacity mode[J]. High Power Laser and Particle Beams, 18, 881-885(2006).
[21] Zheng L H, Kausas A, Taira T. >MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser[J]. Optics Express, 24, 28748-28760(2016).
[22] Fan T Y. Heat generation in Nd∶YAG and Yb∶YAG[J]. IEEE Journal of Quantum Electronics, 29, 1457-1459(1993).
Get Citation
Copy Citation Text
Fangfang Ruan, Fangying Tang, Jinhong Wang, Lü Yanfei, Jiawei Li, Xinxin Wang, Yuhui Yan, Liangbi Su, Lihe Zheng. Numerical Simulation of Temperature Distribution in End-Pumped Nd∶YAG with Uniform and Gradient Dopants of Nd3+[J]. Acta Optica Sinica, 2024, 44(7): 0716002
Category: Materials
Received: Dec. 16, 2023
Accepted: Jan. 21, 2024
Published Online: Apr. 11, 2024
The Author Email: Su Liangbi (suliangbi@mail.sic.ac.cn), Zheng Lihe (zhenglihe@ynu.edu.cn)