Acta Laser Biology Sinica, Volume. 32, Issue 6, 517(2023)
The Mechanism and Application of Phage in the Prevention and Control of Fish Bacterial Diseases
[7] [7] ISABEL T C, LúCIA S. Antibiotics in the aquatic environments: a review of the European scenario[J]. Environment International, 2016, 94(6): 736-757.
[8] [8] WANG L, HU T, LI Y, et al. Unraveling the interplay between antibiotic resistance genes and microbial communities in water and sediments of the intensive tidal flat aquaculture[J]. Environmental Pollution, 2023, 339(12): 122734.
[9] [9] WANYAN R, PAN M, MAI Z, et al. Fate of high-risk antibiotic resistance genes in large-scale aquaculture sediments: geographical differentiation and corresponding drivers[J]. The Science of the Total Environment, 2023, 905(16): 167068.
[10] [10] CHEN C Q, ZHENG L, ZHOU J L, et al. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China[J]. Science of the Total Environment, 2017, 580(11): 1175-1184.
[11] [11] PENG K, CHEN M, WANG Y, et al. Genotype diversity and antibiotic resistance risk in Aeromonas hydrophila in Sichuan, China[J]. Brazilian Journal of Microbiology, 2023, 54(4): 3327.
[14] [14] DION M B, OECHSLIN F, MOINEAU S. Phage diversity, genomics and phylogeny[J]. Nature Reviews Microbiology, 2020, 18(3): 125-138.
[15] [15] HARGREAVES K R, KROPINSKI A M, CLOKIE M R. Bacteriophage behavioral ecology: how phages alter their bacterial host’s habits[J]. Bacteriophage, 2014, 4(8): e29866.
[16] [16] MATOS R C, LAPAQUE N, RIGOTTIER-GOIS L, et al. Enterococcus faecalis prophage dynamics and contributions to pathogenic traits[J]. PLoS Genetics, 2013, 9(6): e1003539.
[17] [17] DWAYNE R R, CHUNG Y L, MARINE H, et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen[J]. Cell Host & Microbe, 2017, 22(1): 38-47.
[18] [18] CAHILL J, YOUNG R. Phage lysis: multiple genes for multiple barriers[J]. Advances in Virus Research, 2019, 103(9): 33-70.
[20] [20] BHASKARA L R, MILTON H S. Topological and phylogenetic analyses of bacterial holin families and superfamilies[J]. BBA-Biomembranes, 2013, 1828(11): 2654-2671.
[21] [21] ING-NANG W, DAVID L S, RY Y. Holins: the protein clocks of bacteriophage infections[J]. Annual Review of Microbiology, 2000, 54(1): 799-825.
[22] [22] WHITE R, CHIBA S, PANG T, et al. Holin triggering in real time[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2): 798-803.
[23] [23] PANG T, SAVVA C G, FLEMING K G, et al. Structure of the lethal phage pinhole[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(45): 18966-18971.
[24] [24] FRANK O, CARMEN M, PHILIPPE M, et al. The multidomain architecture of a bacteriophage endolysin enables intramolecular synergism and regulation of bacterial lysis[J]. Journal of Biological Chemistry, 2021, 296(10): 100639.
[26] [26] XU M, AROCKIASAMY A, DOUGLAS K S, et al. Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme[J]. Science, 2005, 307(5706): 113-117.
[27] [27] YOUNG R. Phage lysis: three steps, three choices, one outcome[J]. Journal of Microbiology, 2014, 52(3): 243-258.
[29] [29] SOFIA F, CARLOS S. Enzymes and mechanisms employed by tailed bacteriophages to breach the bacterial cell barriers[J]. Viruses, 2018, 10(8): 396.
[30] [30] NINA C. Phage therapy—history from twort and D’Herelle through soviet experience to current approaches[J]. Advances in Virus Research, 2012, 83(7): 3-40.
[31] [31] DEREK M L, HENRY C L. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance[J]. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2017, 8(3): 162-173.
[32] [32] STRATHDEE S A, HATFULL G F, MUTALIK V K, et al. Phage therapy: from biological mechanisms to future directions[J]. Cell, 2023, 186(1): 17-31.
[33] [33] HUA Y, LUO T, YANG Y, et al. Phage therapy as a promising new treatment for lung infection caused by carbapenem-resistant Acinetobacter baumannii in Mice[J]. Frontiers in Microbiology, 2017, 8(9): 2659.
[34] [34] OECHSLIN F, PICCARDI P, MANCINI S, et al. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence[J]. The Journal of Infectious Diseases, 2017, 215(5): 703-712.
[35] [35] LOOD R, WINER B Y, PELZEK A J, et al. Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(4): 1983-1991.
[36] [36] ZHAO X, LI L, ZHANG Q, et al. Characterization of the Clostridium perfringens phage endolysin cpp-lys and its application on lettuce[J]. International Journal of Food Microbiology, 2023, 405(11): 110343.
[37] [37] VERA M, IGOR B, YULIYA K, et al. Isolation, characterization and genomic analysis of a novel jumbo phage, AerS_266, that infects Aeromonas salmonicida[J]. Microorganisms, 2023, 11(11): 2649.
[38] [38] TSERTOU M I, TRIGA A, DROUBOGIANNIS S, et al. Isolation and characterization of a novel Tenacibaculum species and a corresponding bacteriophage from a mediterranean fish hatchery: description of Tenacibaculum larymnensis sp. nov. and Tenacibaculum phage Larrie[J]. Frontiers in Microbiology, 2023, 14(10): 1078669.
[39] [39] YOU H J, LEE J H, OH M, et al. Tackling Vibrio parahaemolyticus in ready-to-eat raw fish flesh slices using lytic phage VPT02 isolated from market oyster[J]. Food Research International, 2021, 150(11): 110779.
[40] [40] ZHANG J, XU H, YANG H, et al. Screening of a Plesiomonas shigelloides phage and study of the activity of its lysis system[J]. Virus Research, 2021, 306(10): 198581.
[42] [42] WU J L, LIN H M, JAN L, et al. Biological control of fish bacterial pathogen, Aeromonas hydrophila, by bacteriophage AH1[J]. Fish Pathology, 1981, 15(3/4): 271-276.
[43] [43] LUO X, LIAO G, LIU C, et al. Characterization of bacteriophage HN48 and its protective effects in Nile tilapia Oreochromis niloticus against Streptococcus agalactiae infections[J]. Journal of Fish Diseases, 2018, 41(10): 1477-1484.
[45] [45] XU Z, JIN P, ZHOU X, et al. Isolation of a virulent Aeromonas salmonicida subsp. masoucida bacteriophage and its application in phage therapy in turbot (Scophthalmus maximus)[J]. Applied and Environmental Microbiology, 2021, 87(21): 0146821.
[47] [47] HUANG C, FENG C, LIU X, et al. The bacteriophage vB_CbrM_HP1 protects crucian carp against Citrobacter braakii infection[J]. Frontiers in Veterinary Science, 2022, 9(6): 888561.
[48] [48] GASTóN H, ROBERTO B, GEORGE T, et al. Recently discovered Vibrio anguillarum phages can protect against experimentally induced vibriosis in Atlantic salmon, Salmo salar[J]. Aquaculture, 2013, 392-395(10): 128-133.
[49] [49] ELINA L, JAANA K H B, JANNE J R, et al. The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture[J]. Frontiers in Microbiology, 2015, 6(8): 829.
[50] [50] YOLANDA J S, CATARINA M, CARLA P, et al. Biological control of Aeromonas salmonicida infection in juvenile senegalese sole (Solea senegalensis) with phage AS-A[J]. Aquaculture, 2016, 450(1): 225-233.
[52] [52] SE C P, TOSHIHIRO N. Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis[J]. Diseases of Aquatic Organisms, 2003, 53(1): 33-39.
[53] [53] DANG T H O, XUAN T T T, DUYEN L T M, et al. Protective efficacy of phage PVN02 against haemorrhagic septicaemia in striped catfish Pangasianodon hypophthalmus via oral administration[J]. Journal of Fish Diseases, 2021, 44(8): 1255-1263.
[55] [55] KUNTTU H M T, RUNTUVUORI-SALMELA A, MIDDELBOE M, et al. Comparison of delivery methods in phage therapy against Flavobacterium columnare infections in rainbow trout[J]. Antibiotics, 2021, 10(8): 914.
[56] [56] SILVA Y J, COSTA L, PEREIRA C, et al. Influence of environmental variables in the efficiency of phage therapy in aquaculture[J]. Microbial Biotechnology, 2014, 7(5): 401-413.
[57] [57] CHAMILANI N, CHANDRARATHNA H P S U, DANANJAYA S H S, et al. Isolation and characterization of phage (ETP-1) specific to multidrug resistant pathogenic Edwardsiella tarda and its in vivo biocontrol efficacy in zebrafish (Danio rerio)[J]. Biologicals, 2020, 63(1): 14-23.
[58] [58] CHRISTIANSEN R H, DALSGAARD I, MIDDELBOE M, et al. Detection and quantification of Flavobacterium psychrophilum-specific bacteriophages in vivo in rainbow trout upon oral administration: implications for disease control in aquaculture[J]. Applied and Environmental Microbiology, 2014, 80(24): 7683-7693.
[59] [59] MADSEN L, BERTELSEN S K, DALSGAARD I, et al. Dispersal and survival of Flavobacterium psychrophilum phages in vivo in rainbow trout and in vitro under laboratory conditions: implications for their use in phage therapy[J]. Applied and Environmental Microbiology, 2013, 79(16): 4853-4861.
[60] [60] TUAN S L, THI H N, HONG P V, et al. Protective effects of bacteriophages against Aeromonas hydrophila causing Motile Aeromonas Septicemia (MAS) in striped catfish[J]. Antibiotics, 2018, 7(1): 16.
[61] [61] YOO S, LEE K, KIM N, et al. Designing phage cocktails to combat the emergence of bacteriophage-resistant mutants in multidrug-resistant Klebsiella pneumoniae[J]. Microbiology Spectrum, 2023, 10(11): e0125823.
[62] [62] SCHMELCHER M, DONOVAN D M, LOESSNER M J. Bacteriophage endolysins as novel antimicrobials[J]. Future Microbiology, 2012, 7(10): 1147-1171.
[64] [64] CARLOS S. Engineering of phage-derived lytic enzymes: improving their potential as antimicrobials[J]. Antibiotics, 2018, 7(2): 29.
[65] [65] SON B, KONG M, CHA Y, et al. Simultaneous control of Staphylococcus aureus and Bacillus cereus using a hybrid endolysin LysB4EAD-LysSA11[J]. Antibiotics (Basel, Switzerland), 2020, 9(12): 906.
[66] [66] JIANG Y, XU D, WANG L, et al. Characterization of a broad-spectrum endolysin LysSP1 encoded by a Salmonella bacteriophage[J]. Applied Microbiology and Biotechnology, 2021, 105(13): 5461-5470.
[67] [67] NANDITA M, SARITA G B. Phage endolysins as potential antimicrobials against multidrug resistant Vibrio alginolyticus and Vibrio parahaemolyticus: current status of research and challenges ahead[J]. Microorganisms, 2019, 7(3): 84.
[68] [68] RAMESH N, MADURANTAKAM R M, MANOHAR P, et al. Application of bacteriophages and its endolysin in aquaculture as a biocontrol measure[J]. Biological Control, 2021, 160(9): 104678.
[69] [69] VASINA D V, ANTONOVA N P, GRIGORIEV I V, et al. Discovering the potentials of four phage endolysins to combat gram-negative infections[J]. Frontiers in Microbiology, 2021, 12(8): 748718.
[70] [70] CASS J, BARNARD A, FAIRHEAD H. Engineered bacteriophage as a delivery vehicle for antibacterial protein, SASP[J]. Pharmaceuticals, 2021, 14(10): 1038.
[71] [71] DU J, MEILE S, BAGGENSTOS J, et al. Enhancing bacteriophage therapeutics through in situ production and release of heterologous antimicrobial effectors[J]. Nature Communications, 2023, 14(1): 4337.
[72] [72] DEDRICK R M, GUERRERO-BUSTAMANTE C A, GARLENA R A, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus[J]. Nature Medicine, 2019, 25(5): 730-733.
[73] [73] LIM J, JANG J, MYUNG H, et al. Eradication of drug-resistant Acinetobacter baumannii by cell-penetrating peptide fused endolysin[J]. Journal of Microbiology, 2022, 60(8): 859-866.
[75] [75] GONG H, HU X, LIAO M, et al. Structural disruptions of the outer membranes of Gram-negative bacteria by rationally designed amphiphilic antimicrobial peptides[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16062-16074.
[76] [76] WANG T, ZHENG Y, DAI J, et al. Design SMAP29-LysPA26 as a highly efficient artilysin against Pseudomonas aeruginosa with bactericidal and antibiofilm activity[J]. Microbiology Spectrum, 2021, 9(3): e0054621.
Get Citation
Copy Citation Text
ZHOU Fangfang, HU Shengbiao, ZAHNG Youming, XIA Liqiu. The Mechanism and Application of Phage in the Prevention and Control of Fish Bacterial Diseases[J]. Acta Laser Biology Sinica, 2023, 32(6): 517
Received: Dec. 19, 2023
Accepted: --
Published Online: Feb. 2, 2024
The Author Email: