Acta Laser Biology Sinica, Volume. 32, Issue 6, 517(2023)

The Mechanism and Application of Phage in the Prevention and Control of Fish Bacterial Diseases

ZHOU Fangfang, HU Shengbiao, ZAHNG Youming, and XIA Liqiu
Author Affiliations
  • [in Chinese]
  • show less
    References(58)

    [7] [7] ISABEL T C, LúCIA S. Antibiotics in the aquatic environments: a review of the European scenario[J]. Environment International, 2016, 94(6): 736-757.

    [8] [8] WANG L, HU T, LI Y, et al. Unraveling the interplay between antibiotic resistance genes and microbial communities in water and sediments of the intensive tidal flat aquaculture[J]. Environmental Pollution, 2023, 339(12): 122734.

    [9] [9] WANYAN R, PAN M, MAI Z, et al. Fate of high-risk antibiotic resistance genes in large-scale aquaculture sediments: geographical differentiation and corresponding drivers[J]. The Science of the Total Environment, 2023, 905(16): 167068.

    [10] [10] CHEN C Q, ZHENG L, ZHOU J L, et al. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China[J]. Science of the Total Environment, 2017, 580(11): 1175-1184.

    [11] [11] PENG K, CHEN M, WANG Y, et al. Genotype diversity and antibiotic resistance risk in Aeromonas hydrophila in Sichuan, China[J]. Brazilian Journal of Microbiology, 2023, 54(4): 3327.

    [14] [14] DION M B, OECHSLIN F, MOINEAU S. Phage diversity, genomics and phylogeny[J]. Nature Reviews Microbiology, 2020, 18(3): 125-138.

    [15] [15] HARGREAVES K R, KROPINSKI A M, CLOKIE M R. Bacteriophage behavioral ecology: how phages alter their bacterial host’s habits[J]. Bacteriophage, 2014, 4(8): e29866.

    [16] [16] MATOS R C, LAPAQUE N, RIGOTTIER-GOIS L, et al. Enterococcus faecalis prophage dynamics and contributions to pathogenic traits[J]. PLoS Genetics, 2013, 9(6): e1003539.

    [17] [17] DWAYNE R R, CHUNG Y L, MARINE H, et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen[J]. Cell Host & Microbe, 2017, 22(1): 38-47.

    [18] [18] CAHILL J, YOUNG R. Phage lysis: multiple genes for multiple barriers[J]. Advances in Virus Research, 2019, 103(9): 33-70.

    [20] [20] BHASKARA L R, MILTON H S. Topological and phylogenetic analyses of bacterial holin families and superfamilies[J]. BBA-Biomembranes, 2013, 1828(11): 2654-2671.

    [21] [21] ING-NANG W, DAVID L S, RY Y. Holins: the protein clocks of bacteriophage infections[J]. Annual Review of Microbiology, 2000, 54(1): 799-825.

    [22] [22] WHITE R, CHIBA S, PANG T, et al. Holin triggering in real time[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2): 798-803.

    [23] [23] PANG T, SAVVA C G, FLEMING K G, et al. Structure of the lethal phage pinhole[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(45): 18966-18971.

    [24] [24] FRANK O, CARMEN M, PHILIPPE M, et al. The multidomain architecture of a bacteriophage endolysin enables intramolecular synergism and regulation of bacterial lysis[J]. Journal of Biological Chemistry, 2021, 296(10): 100639.

    [26] [26] XU M, AROCKIASAMY A, DOUGLAS K S, et al. Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme[J]. Science, 2005, 307(5706): 113-117.

    [27] [27] YOUNG R. Phage lysis: three steps, three choices, one outcome[J]. Journal of Microbiology, 2014, 52(3): 243-258.

    [29] [29] SOFIA F, CARLOS S. Enzymes and mechanisms employed by tailed bacteriophages to breach the bacterial cell barriers[J]. Viruses, 2018, 10(8): 396.

    [30] [30] NINA C. Phage therapy—history from twort and D’Herelle through soviet experience to current approaches[J]. Advances in Virus Research, 2012, 83(7): 3-40.

    [31] [31] DEREK M L, HENRY C L. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance[J]. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2017, 8(3): 162-173.

    [32] [32] STRATHDEE S A, HATFULL G F, MUTALIK V K, et al. Phage therapy: from biological mechanisms to future directions[J]. Cell, 2023, 186(1): 17-31.

    [33] [33] HUA Y, LUO T, YANG Y, et al. Phage therapy as a promising new treatment for lung infection caused by carbapenem-resistant Acinetobacter baumannii in Mice[J]. Frontiers in Microbiology, 2017, 8(9): 2659.

    [34] [34] OECHSLIN F, PICCARDI P, MANCINI S, et al. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence[J]. The Journal of Infectious Diseases, 2017, 215(5): 703-712.

    [35] [35] LOOD R, WINER B Y, PELZEK A J, et al. Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(4): 1983-1991.

    [36] [36] ZHAO X, LI L, ZHANG Q, et al. Characterization of the Clostridium perfringens phage endolysin cpp-lys and its application on lettuce[J]. International Journal of Food Microbiology, 2023, 405(11): 110343.

    [37] [37] VERA M, IGOR B, YULIYA K, et al. Isolation, characterization and genomic analysis of a novel jumbo phage, AerS_266, that infects Aeromonas salmonicida[J]. Microorganisms, 2023, 11(11): 2649.

    [38] [38] TSERTOU M I, TRIGA A, DROUBOGIANNIS S, et al. Isolation and characterization of a novel Tenacibaculum species and a corresponding bacteriophage from a mediterranean fish hatchery: description of Tenacibaculum larymnensis sp. nov. and Tenacibaculum phage Larrie[J]. Frontiers in Microbiology, 2023, 14(10): 1078669.

    [39] [39] YOU H J, LEE J H, OH M, et al. Tackling Vibrio parahaemolyticus in ready-to-eat raw fish flesh slices using lytic phage VPT02 isolated from market oyster[J]. Food Research International, 2021, 150(11): 110779.

    [40] [40] ZHANG J, XU H, YANG H, et al. Screening of a Plesiomonas shigelloides phage and study of the activity of its lysis system[J]. Virus Research, 2021, 306(10): 198581.

    [42] [42] WU J L, LIN H M, JAN L, et al. Biological control of fish bacterial pathogen, Aeromonas hydrophila, by bacteriophage AH1[J]. Fish Pathology, 1981, 15(3/4): 271-276.

    [43] [43] LUO X, LIAO G, LIU C, et al. Characterization of bacteriophage HN48 and its protective effects in Nile tilapia Oreochromis niloticus against Streptococcus agalactiae infections[J]. Journal of Fish Diseases, 2018, 41(10): 1477-1484.

    [45] [45] XU Z, JIN P, ZHOU X, et al. Isolation of a virulent Aeromonas salmonicida subsp. masoucida bacteriophage and its application in phage therapy in turbot (Scophthalmus maximus)[J]. Applied and Environmental Microbiology, 2021, 87(21): 0146821.

    [47] [47] HUANG C, FENG C, LIU X, et al. The bacteriophage vB_CbrM_HP1 protects crucian carp against Citrobacter braakii infection[J]. Frontiers in Veterinary Science, 2022, 9(6): 888561.

    [48] [48] GASTóN H, ROBERTO B, GEORGE T, et al. Recently discovered Vibrio anguillarum phages can protect against experimentally induced vibriosis in Atlantic salmon, Salmo salar[J]. Aquaculture, 2013, 392-395(10): 128-133.

    [49] [49] ELINA L, JAANA K H B, JANNE J R, et al. The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture[J]. Frontiers in Microbiology, 2015, 6(8): 829.

    [50] [50] YOLANDA J S, CATARINA M, CARLA P, et al. Biological control of Aeromonas salmonicida infection in juvenile senegalese sole (Solea senegalensis) with phage AS-A[J]. Aquaculture, 2016, 450(1): 225-233.

    [52] [52] SE C P, TOSHIHIRO N. Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis[J]. Diseases of Aquatic Organisms, 2003, 53(1): 33-39.

    [53] [53] DANG T H O, XUAN T T T, DUYEN L T M, et al. Protective efficacy of phage PVN02 against haemorrhagic septicaemia in striped catfish Pangasianodon hypophthalmus via oral administration[J]. Journal of Fish Diseases, 2021, 44(8): 1255-1263.

    [55] [55] KUNTTU H M T, RUNTUVUORI-SALMELA A, MIDDELBOE M, et al. Comparison of delivery methods in phage therapy against Flavobacterium columnare infections in rainbow trout[J]. Antibiotics, 2021, 10(8): 914.

    [56] [56] SILVA Y J, COSTA L, PEREIRA C, et al. Influence of environmental variables in the efficiency of phage therapy in aquaculture[J]. Microbial Biotechnology, 2014, 7(5): 401-413.

    [57] [57] CHAMILANI N, CHANDRARATHNA H P S U, DANANJAYA S H S, et al. Isolation and characterization of phage (ETP-1) specific to multidrug resistant pathogenic Edwardsiella tarda and its in vivo biocontrol efficacy in zebrafish (Danio rerio)[J]. Biologicals, 2020, 63(1): 14-23.

    [58] [58] CHRISTIANSEN R H, DALSGAARD I, MIDDELBOE M, et al. Detection and quantification of Flavobacterium psychrophilum-specific bacteriophages in vivo in rainbow trout upon oral administration: implications for disease control in aquaculture[J]. Applied and Environmental Microbiology, 2014, 80(24): 7683-7693.

    [59] [59] MADSEN L, BERTELSEN S K, DALSGAARD I, et al. Dispersal and survival of Flavobacterium psychrophilum phages in vivo in rainbow trout and in vitro under laboratory conditions: implications for their use in phage therapy[J]. Applied and Environmental Microbiology, 2013, 79(16): 4853-4861.

    [60] [60] TUAN S L, THI H N, HONG P V, et al. Protective effects of bacteriophages against Aeromonas hydrophila causing Motile Aeromonas Septicemia (MAS) in striped catfish[J]. Antibiotics, 2018, 7(1): 16.

    [61] [61] YOO S, LEE K, KIM N, et al. Designing phage cocktails to combat the emergence of bacteriophage-resistant mutants in multidrug-resistant Klebsiella pneumoniae[J]. Microbiology Spectrum, 2023, 10(11): e0125823.

    [62] [62] SCHMELCHER M, DONOVAN D M, LOESSNER M J. Bacteriophage endolysins as novel antimicrobials[J]. Future Microbiology, 2012, 7(10): 1147-1171.

    [64] [64] CARLOS S. Engineering of phage-derived lytic enzymes: improving their potential as antimicrobials[J]. Antibiotics, 2018, 7(2): 29.

    [65] [65] SON B, KONG M, CHA Y, et al. Simultaneous control of Staphylococcus aureus and Bacillus cereus using a hybrid endolysin LysB4EAD-LysSA11[J]. Antibiotics (Basel, Switzerland), 2020, 9(12): 906.

    [66] [66] JIANG Y, XU D, WANG L, et al. Characterization of a broad-spectrum endolysin LysSP1 encoded by a Salmonella bacteriophage[J]. Applied Microbiology and Biotechnology, 2021, 105(13): 5461-5470.

    [67] [67] NANDITA M, SARITA G B. Phage endolysins as potential antimicrobials against multidrug resistant Vibrio alginolyticus and Vibrio parahaemolyticus: current status of research and challenges ahead[J]. Microorganisms, 2019, 7(3): 84.

    [68] [68] RAMESH N, MADURANTAKAM R M, MANOHAR P, et al. Application of bacteriophages and its endolysin in aquaculture as a biocontrol measure[J]. Biological Control, 2021, 160(9): 104678.

    [69] [69] VASINA D V, ANTONOVA N P, GRIGORIEV I V, et al. Discovering the potentials of four phage endolysins to combat gram-negative infections[J]. Frontiers in Microbiology, 2021, 12(8): 748718.

    [70] [70] CASS J, BARNARD A, FAIRHEAD H. Engineered bacteriophage as a delivery vehicle for antibacterial protein, SASP[J]. Pharmaceuticals, 2021, 14(10): 1038.

    [71] [71] DU J, MEILE S, BAGGENSTOS J, et al. Enhancing bacteriophage therapeutics through in situ production and release of heterologous antimicrobial effectors[J]. Nature Communications, 2023, 14(1): 4337.

    [72] [72] DEDRICK R M, GUERRERO-BUSTAMANTE C A, GARLENA R A, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus[J]. Nature Medicine, 2019, 25(5): 730-733.

    [73] [73] LIM J, JANG J, MYUNG H, et al. Eradication of drug-resistant Acinetobacter baumannii by cell-penetrating peptide fused endolysin[J]. Journal of Microbiology, 2022, 60(8): 859-866.

    [75] [75] GONG H, HU X, LIAO M, et al. Structural disruptions of the outer membranes of Gram-negative bacteria by rationally designed amphiphilic antimicrobial peptides[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16062-16074.

    [76] [76] WANG T, ZHENG Y, DAI J, et al. Design SMAP29-LysPA26 as a highly efficient artilysin against Pseudomonas aeruginosa with bactericidal and antibiofilm activity[J]. Microbiology Spectrum, 2021, 9(3): e0054621.

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Fangfang, HU Shengbiao, ZAHNG Youming, XIA Liqiu. The Mechanism and Application of Phage in the Prevention and Control of Fish Bacterial Diseases[J]. Acta Laser Biology Sinica, 2023, 32(6): 517

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 19, 2023

    Accepted: --

    Published Online: Feb. 2, 2024

    The Author Email:

    DOI:10.3969/j.issn.1007-7146.2023.06.004

    Topics