Laser & Optoelectronics Progress, Volume. 58, Issue 14, 1430002(2021)

Classification of Rubber Soles by X-ray Fluorescence Spectrometry Based on Multiple Linear Regression

Lanze Zhang1, Hong Jiang1、*, Jintong Liu1, Jiageng Wang2, and Ji Man3
Author Affiliations
  • 1School of Investigation, People's Public Security University of China, Beijing 100038, China
  • 2Fengtai Branch of Beijing Municipal Public Security Bureau, Beijing 100071, China
  • 3Beijing Huayi Hongsheng Technology Co., Ltd., Beijing 100123, China
  • show less
    Figures & Tables(12)
    Score of shoe types
    Flow chart of multivariate linear regression classification method
    • Table 1. List of relevant information of rubber sole samples

      View table

      Table 1. List of relevant information of rubber sole samples

      No.BrandShoe typeMale or female
      1AOKANGLeather shoeFemale
      2YONGLIANGLeather shoeMale
      3NIKECasual shoeMale
      4UnknownRunning shoeMale
      5CrocodileLeather shoeMale
      6LouisLeather shoeMale
      7YONGLIANGLeather shoeMale (special sole material)
      8PLOVERLeather shoeMale
      9GALeather shoeMale (military sole material)
      10CamelLeather shoeMale
      11SHEN TACasual shoeFemale
      12JRV NALILeather shoeMale
      13DAPHNELeather shoeFemale
      14People's Public Security University of ChinaLeather shoeMale
      15DAPHNELeather shoeFemale
      No.BrandShoe typeMale or female
      16Z.SuoCasual shoeMale
      17WarriorCasual shoeMale
      18LiNingBasketball shoeMale
      19ANTABasketball shoeMale
      20OLUNPOLeather shoeMale
      21361°Basketball shoeMale
      22NIKEBasketball shoeMale
      23UnknownLeather shoeMale
      24AOKANGLeather shoeFemale
      25YANG DACasual shoeMale
      26NIKERunning shoeMale
      27361°Casual shoeMale
      28NIKESlipperMale
      29YINGYUEGULeather shoeMale
      30MISTRALCasual shoeMale
      31PUMACasual shoeMale
      32SENDALeather shoeMale
      33NIKESoccer shoeMale
      34NiuAiKeLeather shoeMale
      35AOKANGLeather shoeMale
      36AOKANGLeather shoeMale
      37AdidasCasual shoeMale
      38People's Public Security University of ChinaLeather shoeMale
      39People's Public SecurityUniversity of ChinaLeather shoeMale
      40People's Public Security University of ChinaLeather shoeMale
    • Table 2. Variable description

      View table

      Table 2. Variable description

      VariableExplanation of variables
      KindLeather shoes are marked as 1 and other types of shoes are marked as 0
      Gender1 for men's shoes and 0 for women's shoes
      ElementSeven kinds of elements in rubber sole
    • Table 3. Descriptive statistical results of types of shoes

      View table

      Table 3. Descriptive statistical results of types of shoes

      KindFrequencyProportion /%Cumulative proportion /%
      Leather shoe2357.557.5
      Casual shoe922.580.0
      Basketball shoe410.090.0
      Running shoe25.095.0
      Football shoe12.597.5
      Slipper12.5100.0
    • Table 4. Statistical analysis of sample element content

      View table

      Table 4. Statistical analysis of sample element content

      ElementMean /10-6Std. Dev. /10-6Min /10-6Max /10-6
      Ca22572.829050.95135128227
      Ti6010.62511462.14049237
      Zn9464.0256429.3433226219
      Pb386.5251372.05307975
      Fe605.1751027.58204959
      Cu69.2555.838020201
      Sb69.57553.307470285
    • Table 5. Re-regression results of sample element content

      View table

      Table 5. Re-regression results of sample element content

      VariableRobust
      ηCoefEStdtP[95%Conf. Interval]
      Gender-0.23049340.2608486-0.880.384-0.76249760.3015108
      Ca-4.44×10-61.68×10-6-2.650.013-7.86×10-6-1.02×10-6
      Zn6.05×10-60.00001290.470.641-0.00002020.0000323
      Fe0.00015240.000081.910.066-0.00001070.0003154
      Sb0.00102580.00060191.70.098-0.00020180.0022534
      Cu-0.00225860.0012021-1.880.07-0.00471040.0001931
      Ti-0.00001994.46×10-6-4.460-0.000029-0.0000108
      Pb-0.00003170.0000385-0.820.417-0.00011030.0000469
      Cons0.94430760.30064263.140.0040.33114311.557472
    • Table 6. Average element content of different shoes

      View table

      Table 6. Average element content of different shoes

      VariableElement content /10-6
      CaCuTiFeSb
      Others28689.1880.3512992.82170.5358.06
      Leather shoe18052.0061.04849.87926.4378.09
    • Table 7. Standardized regression results of each element in the sample

      View table

      Table 7. Standardized regression results of each element in the sample

      VariableηCoefEStdtPα
      Ca-4.45×10-62.18×10-6-2.040.049-0.2581123
      Cu-0.00224860.0011303-1.990.055-0.2507974
      Ti-0.00001985.51×10-6-3.590.001-0.4522083
      Fe0.00017990.00006352.830.0080.3693422
      Cons0.84094470.11780957.140
    • Table 8. Test results of multicollinearity

      View table

      Table 8. Test results of multicollinearity

      VariableFVIF1/FVIF
      Fe1.110.897329
      Ca1.050.95281
      Ti1.040.958093
      Cu1.040.958947
      Mean FVIF1.06
    • Table 9. Element content of misclassified samples

      View table

      Table 9. Element content of misclassified samples

      Sample No.Element content /10-6
      CaFeCuTi
      2812610300
      3222850722074
      352152811701230
      38162720242394
      392934081365
    • Table 10. Sample regression results of simulating the real situation of cases

      View table

      Table 10. Sample regression results of simulating the real situation of cases

      VariableElement content /10-6Score rating
      CaCuTiFe
      Yongliang leather shoe2172006470.947675
      Yongliang leather shoe (combustion group)2312006010.938776
      Crocodile leather shoe17573008880.922496
      Crocodile leather shoe (bloodstain group)16326008280.917251
      Z. Suo casual shoe8007302104500.067929
      Z. Suo casual shoe (soil group)7907402031500.086828
      Huili casual shoe (paint group)85402367900.3683
      Yangda casual shoe (control group)10780647935400.070315
      Yangda casual shoe (ink group)10963460970600.025979
    Tools

    Get Citation

    Copy Citation Text

    Lanze Zhang, Hong Jiang, Jintong Liu, Jiageng Wang, Ji Man. Classification of Rubber Soles by X-ray Fluorescence Spectrometry Based on Multiple Linear Regression[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1430002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Oct. 20, 2020

    Accepted: Dec. 3, 2020

    Published Online: Jul. 14, 2021

    The Author Email: Hong Jiang (jiangh2001@163.com)

    DOI:10.3788/LOP202158.1430002

    Topics