Journal of Inorganic Materials, Volume. 39, Issue 6, 681(2024)

Preparation and Wave-absorbing Properties of Polymer-derived SiHfCN Ceramics

Yuyu ZHANG, Yicheng WU, Jia SUN*, and Qiangang FU*
Author Affiliations
  • State Key Laboratory of Ultra High Temperature Composite Materials, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi’an 710072, China
  • show less
    References(44)

    [1] XIA Y, GAO W, GAO C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption[J]. Advanced Functional Materials, 32, 2204591(2022).

    [2] ZHOU R, WANG Y, LIU Z et al. Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption[J]. Nano-Micro Letters, 14: 122(2022).

    [3] ZOU Z, NING M, LEI Z et al. 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2-18 GHz[J]. Carbon(2022).

    [4] QIAO M, QI J, WANG J et al. Recent progress on 3D graphene aerogel based microwave absorbing materials[J]. Acta Materiae Compositae Sinica, 41, 550(2024).

    [5] SONG Y, LIU P, ZHOU R et al. SiBNCx ceramics derived from single source polymeric precursor with controllable carbon structures for highly efficient electromagnetic wave absorption at high temperature[J]. Carbon, 188: 12(2022).

    [6] SONG Y, JIN S, HU K et al. Adjustable iron-containing SiBCN ceramics with high temperature microwave absorption and anti-oxidation properties[J]. Journal of the American Ceramic Society, 104: 5244(2021).

    [7] CHEN P, CHEN J, WANG C et al. The heterointerface of graphene in-situ growth for enhanced microwave attenuation properties in La-doped SiBCN ceramics[J]. Ceramics International, 49, 26642(2023).

    [8] ANAND R, LU K, NAYAK B B et al. Structural evolution and oxidation resistance of polysilazane-derived SiCN-HfO2 ceramics[J]. Journal of the American Ceramic Society, 107, 1657(2024).

    [9] XIA Q, HAN Z, ZHANG Z et al. High temperature microwave absorbing materials[J]. Journal of Materials Chemistry C, 11, 4552(2023).

    [10] JIAO X, HE Q, QING M et al. Ablation behavior of C/C-Zr1-xHfxC-SiC composites under an oxyacetylene flame at above 2500 ℃[J]. Journal of Materials Research and Technology, 24: 3235(2023).

    [11] REN B, DENG Y, JIA Y et al. Achieving broadband electromagnetic absorption at a wide temperature range up to 1273 K by metamaterial design on polymer-derived SiC-BN@CNT ceramic composites[J]. Chemical Engineering Journal, 478: 147251(2023).

    [12] SHEN J, TANG Z, TUSIIME R et al. Effects of hafnium sources and hafnium content on the structures and properties of SiBNC-Hf ceramic precursors[J]. Journal of the American Ceramic Society, 106, 3239(2023).

    [13] SONG Y, LIU Z, ZHANG X et al. Single source precursor derived SiBCNHf ceramic with enhanced high-temperature microwave absorption and antioxidation[J]. Journal of Materials Science & Technology, 126: 215(2022).

    [14] SUN C, WANG H, ZHOU X. Research progress on ultra-high temperature ceramics powder prepared by precursor-derived method[J]. Bulletin of the Chinese Ceramic Society, 42, 2865(2023).

    [15] ZHAO Z, HAN C, WANG X et al. Synthesis and pyrolysis of Hf-N-B backbone polymer precursor for HfC/HfB2 composite ceramics[J]. Journal of the American Ceramic Society, 107, 3424(2024).

    [16] ZHANG X, SUN J, ZHANG Y et al. Microstructure and phase evolution of polymer-derived SiHfOC ceramic microspheres[J]. Journal of the American Ceramic Society, 105, 7726(2022).

    [17] ZHANG M, FAN X, YE F et al. Synthesis, microstructure and electromagnetic properties of Hf-based SiBCN ceramics[J]. Ceramics International, 49, 19664(2023).

    [18] SONG L, WU C, ZHI Q et al. Multifunctional SiC aerogel reinforced with nanofibers and nanowires for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal, 467: 143518(2023).

    [19] LIU X, YU Z, ISHIKAWA R et al. Single-source-precursor synthesis and electromagnetic properties of novel RGO-SiCN ceramic nanocomposites[J]. Journal of Materials Chemistry C, 5, 7950(2017).

    [20] CHEN Q, LI D, YANG Z et al. SiBCN-reduced graphene oxide (rGO) ceramic composites derived from single-source-precursor with enhanced and tunable microwave absorption performance[J]. Carbon, 179: 180(2021).

    [21] HOU Y, XIAO B, YANG G et al. Enhanced electromagnetic wave absorption performance of novel carbon-coated Fe3Si nanoparticles in an amorphous SiCO ceramic matrix[J]. Journal of Materials Chemistry C, 6, 7661(2018).

    [22] ZHANG Y, SUN J, WANG Y et al. SiCN ceramics with controllable carbon nanomaterials for electromagnetic absorption performance[J]. Journal of the American Ceramic Society, 106, 4220(2023).

    [23] ZENG G, XU P, ZENG C et al. Preparation of HfCxN1-x nanoparticles derived from a multifunction precursor with Hf-O and Hf-N bonds[J]. Materials, 16, 4426(2023).

    [24] SUN J, WEN Q, LI T et al. Phase evolution of SiOC-based ceramic nanocomposites derived from a polymethylsiloxane modified by Hf- and Ti-alkoxides[J]. Journal of the American Ceramic Society, 103, 1436(2020).

    [25] NADAR S S, RATHOD V K. One pot synthesis of α-amylase metal organic framework (MOF)-sponge via dip-coating technique[J]. International Journal of Biological Macromolecules, 138: 1035(2019).

    [26] NOROUZI M, ELHAMIFAR D, MIRBAGHERI R. Phenylene- based periodic mesoporous organosilica supported melamine: an efficient, durable and reusable organocatalyst[J]. Microporous and Mesoporous Materials, 278: 251(2019).

    [27] WANG H, ZHU W, SUN X et al. Preparation of aerogel-like SiOC ceramic with honeycomb structure and its high-temperature performance[J]. Journal of Alloys and Compounds, 937: 168438(2023).

    [28] WU C, WANG B, WU N et al. Molecular-scale understanding on the structure evolution from melamine diborate supramolecule to boron nitride fibers[J]. Ceramics International, 46, 1083(2020).

    [29] TAVAKOLI A H, GERSTEL P, GOLCZEWSKI J A et al. Kinetic effect of boron on the thermal stability of Si-(B-)C-N polymer- derived ceramics[J]. Acta Materialia, 58, 6002(2010).

    [30] CHENG Y, HU L, ZHANG K et al. Facile synthesis of hollow SiC/C nanospheres for high-performance electromagnetic wave absorption[J]. Carbon, 215: 118391(2023).

    [31] FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 61, 14095(2000).

    [33] ZHONG C, HOU Y, YANG W et al. Carbon rich SiOC fibres derived from ceramic precursor for microwave absorption[J]. Journal of Ceramics, 44, 703(2023).

    [34] PANG L, LUO H, FAN X et al. Electromagnetic wave absorbing performance of multiphase (SiC/HfC/C)/SiO2 nanocomposites with an unique microstructure[J]. Journal of the European Ceramic Society, 41, 2425(2021).

    [35] LUO C, MIAO P, TANG Y et al. Excellent electromagnetic wave absorption of MOF/SiBCN nanomaterials at high temperature[J]. Chinese Journal of Aeronautics, 34, 277(2020).

    [36] PAN R, CHEN G, YU X et al. Densification, microstructure and mechanical properties of Ta4HfC5-based ceramics obtained from synthesized nanoscale powder[J]. Journal of the European Ceramic Society, 41, 2247(2021).

    [37] JIA Y, AJAYI T D, RAMAKRISHNAN K R et al. A skin layer made of cured polysilazane and yttria stabilized zirconia for enhanced thermal protection of carbon fiber reinforced polymers (CFRPs)[J]. Surface and Coatings Technology, 404: 126481(2020).

    [38] ZENG G, LI X, WEI Y et al. Significantly toughened SiC foams with enhanced microwave absorption via in situ growth of Si3N4 nanowires[J]. Chemical Engineering Journal, 426: 131745(2021).

    [39] WANG C, CHEN P, LI X et al. Enhanced electromagnetic wave absorption for Y2O3-doped SiBCN ceramics[J]. ACS Applied Materials & Interfaces, 13: 55440(2021).

    [40] ZHOU X, HAN H, WANG Y et al. Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 121: 199(2022).

    [41] ZHI D, LI T, QI Z et al. Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation[J]. Chemical Engineering Journal, 433: 134496(2022).

    [42] YAO L, YANG W, ZHOU S et al. Design paradigm for strong-lightweight perfect microwave absorbers: the case of 3D printed gyroid shellular SiOC-based metamaterials[J]. Carbon, 196: 961(2022).

    [43] YU H, KOU X, ZUO X et al. Optimization of multiple attenuation mechanisms by cation substitution in imidazolic MOFs-derived porous composites for superior broadband electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 176: 176(2024).

    [44] YANG S, TANG L, WEI H et al. In-situ construction of volcanic rock-like structures in Yb2O3 modified reduced graphene oxide and their boosted electromagnetic wave absorbing properties[J]. Carbon, 215: 118445(2023).

    Tools

    Get Citation

    Copy Citation Text

    Yuyu ZHANG, Yicheng WU, Jia SUN, Qiangang FU. Preparation and Wave-absorbing Properties of Polymer-derived SiHfCN Ceramics[J]. Journal of Inorganic Materials, 2024, 39(6): 681

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 29, 2023

    Accepted: --

    Published Online: Jul. 31, 2024

    The Author Email: Jia SUN (j.sun@nwpu.edu.cn), Qiangang FU (fuqiangang@nwpu.edu.cn)

    DOI:10.15541/jim20230546

    Topics