Acta Optica Sinica, Volume. 39, Issue 10, 1030004(2019)

Nondestructive Detection of Sugar Content and Firmness of Red Globe Grape by Hyperspectral Imaging

Sheng Gao1, Qiaohua Wang1,2、*, Dandan Fu1, and Qingxu Li1
Author Affiliations
  • 1College of Engineering, Huazhong Agricultural University, Wuhan, Hubei 430070, China
  • 2Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
  • show less
    Figures & Tables(15)
    Hyperspectral images in three placement orientations. (a) Horizontal; (b) fruit stalk-side down; (c) fruit stalk-side up
    Reflectivity of background and red globe grape area in hyperspectral images
    Hyperspectral image processing of red globe grapes. (a) Hyperspectral image at 726.6 nm; (b) mask template image; (c) masked image of red globe grape area
    Originalspectra of red globe grape samples
    GA characteristic wavelength extraction of sugar content of red globe grape. (a) GA-screened image; (b) change of RMSECV
    SPA characteristic wavelength extraction of sugar content of red globe grape. (a) Change of RMSE; (b) selected variables of SPA
    CARS characteristic wavelength extraction of sugar content of red globe grape. (a) Number of sampled variables; (b) RMSECV; (c) paths of regression coefficients
    UVE characteristic wavelength extraction of sugar content of red globe grape
    Optimal model for sugar content of red globe grape based on GA-RF
    Optimal model for firmness of red globe grape based on MA-SPA-RF
    • Table 1. Full-band PLSR prediction model using different preprocessing methods

      View table

      Table 1. Full-band PLSR prediction model using different preprocessing methods

      IndexPretreatmentLVsCalibration setPrediction set
      RcRMSECRpRMSEP
      Sugar contentRaw190.8270.5640.7260.474
      SNV140.8080.5970.7120.493
      S_G20.6020.7690.4830.619
      MSC80.8110.5950.6650.515
      MA80.4790.7820.3730.881
      MC180.8250.6170.7010.503
      FirmnessRAW80.6964.7430.6754.575
      SNV60.6055.0150.6844.365
      MSC90.6854.6130.5694.789
      MA160.7304.2260.8083.821
      MC100.6464.6520.6914.830
    • Table 2. Datastatistics of partitioning sample sets by SPXY algorithm

      View table

      Table 2. Datastatistics of partitioning sample sets by SPXY algorithm

      Number of samplesIndexMinimumMaximumMeanStandard deviation
      Calibration set (126 samples)Sugar content /(° Brix)13.87518.62516.1090.971
      Firmness /N1.20027.00013.7116.213
      Prediction set (42 samples)Sugar content /(° Brix)15.00017.500015.8580.653
      Firmness /N2.70023.50012.7746.264
    • Table 3. Full-band PLSR prediction model with different placementorientations

      View table

      Table 3. Full-band PLSR prediction model with different placementorientations

      Placement positionIndexLVsCalibration setPrediction set
      RcRMSECRpRMSEP
      Fruit stalk-side downSugar content170.8070.6280.7120.488
      Firmness30.5465.2900.5345.017
      Fruit stalk-side upSugar content130.7920.6590.7050.492
      Firmness60.6464.8540.6064.780
      HorizontalSugar content190.8050.6310.6900.497
      Firmness60.5585.2450.6024.785
      Whole fruitSugar content190.8270.5640.7260.474
      Firmness190.7304.2260.8083.821
    • Table 4. Results of prediction model for sugar content and firmness based on characteristic wavelengths of red globe grape

      View table

      Table 4. Results of prediction model for sugar content and firmness based on characteristic wavelengths of red globe grape

      IndexModeling methodExtraction methodNo. of wavelengthCalibration setPrediction set
      RcRMSECRpRMSEP
      Sugar contentPLSRRaw4380.8270.5640.7260.474
      GA260.8750.4690.7280.443
      SPA170.8620.4920.7450.429
      CARS240.8790.4610.7530.422
      UVE470.8630.4900.7290.444
      LSSVMRaw4380.8250.5680.4860.675
      GA260.8700.4790.7590.415
      SPA170.8640.4890.7520.426
      CARS240.8660.4860.8100.376
      UVE470.8750.4700.7490.426
      RFRaw4380.9540.2600.8730.402
      GA260.9690.2660.9280.254
      SPA170.9620.2680.8950.411
      CARS240.9460.2960.8900.406
      UVE470.9610.2670.9170.297
      FirmnessPLSRMA-Raw4380.7304.2260.8083.821
      MA-GA600.8023.6960.8983.273
      MA-SPA240.8023.6990.9032.888
      MA-CARS220.7314.2240.8863.215
      MA-UVE1390.8043.6870.8873.114
      LSSVMMA-Raw4380.7384.2240.7544.021
      MA-GA600.7953.7880.9013.023
      MA-SPA240.7414.1830.8703.578
      MA-CARS220.7464.1630.8933.288
      MA-UVE1390.8333.4440.9212.674
      RFMA-Raw4380.9602.1950.9053.049
      MA-GA600.9502.1320.9182.031
      MA-SPA240.9612.1190.9321.634
      MA-CARS220.9482.1990.9112.053
      MA-UVE1390.9592.1200.9211.893
    • Table 5. Characteristic wave points of optimal model for sugar content and firmness

      View table

      Table 5. Characteristic wave points of optimal model for sugar content and firmness

      IndexModeling methodSelected variables (wavelength) /nm
      Sugar content(26 points)GA-RF452.76, 456.53, 461.55, 600.98, 626.10, 627.36, 628.62, 631.13, 633.64, 639.92, 644.95, 646.20, 647.46, 648.71,651.23, 655.00, 859.75, 894.92, 918.78, 922.55, 927.58, 936.37, 941.40, 943.91, 945.16, 969.03
      Firmness(24 points)MA-SPA-RF450.24, 451.50, 454.01, 464.06, 476.62, 489.19, 505.51, 557.02, 677.61, 688.91, 706.50, 825.83, 938.88, 947.68, 952.70, 958.98, 961.49, 962.75, 965.26, 969.03, 977.82, 990.38, 996.67, 997.92
    Tools

    Get Citation

    Copy Citation Text

    Sheng Gao, Qiaohua Wang, Dandan Fu, Qingxu Li. Nondestructive Detection of Sugar Content and Firmness of Red Globe Grape by Hyperspectral Imaging[J]. Acta Optica Sinica, 2019, 39(10): 1030004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Mar. 26, 2019

    Accepted: Jul. 8, 2019

    Published Online: Oct. 9, 2019

    The Author Email: Wang Qiaohua (wqh@mail.hzau.edu.cn)

    DOI:10.3788/AOS201939.1030004

    Topics