OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 23, Issue 2, 76(2025)
Research on Composite Nd∶YAG/YAG Transparent Ceramic Polygonal Active Mirror Laser Technology
[1] [1] Coyle D B, Stysley P R, Poulios D, et al. High efficiency, 100 mJ per pulse, Nd∶YAG oscillator optimized for space-based earth and planetary remote sensing[J]. Optics & Laser Technology, 2014, 63:13-18.
[2] [2] Hatae T, Yatsuka E, Hayashi T, et al. Development of a YAG laser system for the edge Thomson scattering system in ITER[J]. Review of Scientific Instruments, 2012, 83(10):10E344.
[3] [3] Yasuhara R, Kawashima T, Sekine T, et al. 213 W average power of 2.4 GW pulsed thermally controlled Nd∶glass zigzag slab laser with a stimulated Brillouin scattering mirror[J]. Optics Letters, 2008, 33(15):1711-1713.
[5] [5] Giesen A, Hgel H, Voss A, et al. Opower H. Scalable concept for diode-pumped high-power solid-state lasers[J]. Applied Physics B, 1994, 58(5):365-372.
[6] [6] Peng Y H, Lim Y X, Cheng J, et al. Near fundamental mode 1.1 kW Yb∶YAG thin-disk laser[J]. Optics letters, 2013, 38(10):1709-1711.
[7] [7] Rcker C, Loescher A, Bienert F, et al. Ultrafast green thin-disk laser exceeding 1.4 kW of average power[J]. Optics letters, 2020, 45(19):5522-5525.
[8] [8] Nagel S, Metzger B, Bauer D, et al. Thin-disk laser system operating above 10 kW at near fundamental mode beam quality[J]. Optics Letters, 2021, 46(5):965-968.
[9] [9] Furuse H, Kawanaka J, Takeshita K, et al. Total-reflection active-mirror laser with cryogenic Yb∶YAG ceramics[J]. Optics letters, 2009, 34(21):3439-3441.
[10] [10] Furuse H, Kawanaka J, Miyanaga N, et al. Thermal effect of cryogenic Yb:YAG total-reflection active-mirror laser[C]//Solid State Lasers XIX:Technology and Devices. SPIE, 2010, 7578:143-150.
[11] [11] Furuse H, Kawanaka J, Miyanaga N, et al. Output characteristics of high power cryogenic Yb∶YAG TRAM laser oscillator[J]. Optics Express, 2012, 20(19):21739-21748.
[12] [12] Furuse H, Chosrowjan H, Kawanaka J, et al. ASE and parasitic lasing in thin disk laser with anti-ASE cap[J]. Optics Express, 2013, 21(11):13118-13124.
[13] [13] Chen Y, Lang Y, Liao L, et al. Compact polygonal active-mirror laser with composite Nd∶YAG/YAG gain medium[J]. IEEE Photonics Journal, 2017, 9(5):1-8.
[14] [14] Lang Y, Chen Y, Ge W, et al. Actively Q-switched laser with novel Nd∶YAG/YAG polygonal active-mirror[J]. Laser Physics, 2018, 28(3):035001.
[15] [15] Lang Y, Chen Y, Zhang H, et al. Passively Q-switched laser based on Nd∶YAG/YAG Polygonal Active Mirror with timing jitter improvement[J]. Optics Communications, 2019, 435:81-87.
[17] [17] Li C, Liu W, Gao H, et al. Scattering effect and laser performance for the Nd∶YAG transparent ceramics[J]. Applied Physics B, 2011, 104(3):625-631.
[18] [18] Y Chen, Z Fan, G Guo, et al. Diode-double-face-pumped Nd∶YAG ceramic slab laser amplifier with low depolarization loss-ScienceDirect[J]. Optical Materials, 2017, 71(9):125-128.
[19] [19] Chang J Q, Shen Y, Bian Q, et al. An exceed 60% efficiency Nd∶YAG transparent ceramic laser with low attenuation loss effect[J]. Frontiers in Physics, 2022, 10:1080275.
Get Citation
Copy Citation Text
LEI Ze-cheng, QU Shun-dong, CHEN Yan-zhong. Research on Composite Nd∶YAG/YAG Transparent Ceramic Polygonal Active Mirror Laser Technology[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2025, 23(2): 76