Journal of Inorganic Materials, Volume. 39, Issue 10, 1167(2024)

Impact of Crucible Bottom Shape on the Growth of Congruent Lithium Niobate Crystals by Czochralski Method

Yongxin HAO1,2, Juan QIN3, Jun SUN4、*, Jinfeng YANG4, Qinglian LI1,2, Guijun HUANG1,2, and Jingjun XU1
Author Affiliations
  • 11. School of Physics, Nankai University, Tianjin 300071, China
  • 22. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 33. Hangzhou Institute of Optics and Fine Mechanics, Hangzhou 311421, China
  • 44. Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
  • show less
    References(24)

    [1] A BOES, L CHANG, C LANGROCK et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science, 379(2023).

    [2] Y F KONG, F BO, W W WANG et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Advanced Materials, 32(2020).

    [3] O SÁNCHEZ-DENA, C D FIERRO-RUIZ, MENDOZA S D VILLALOBOS- et al. Lithium niobate single crystals and powders reviewed—Part I.. Crystals, 10(2020).

    [4] H D LIU, W W WANG, Z Z ZHANG et al. Defect structure of lithium niobate crystals. Journal of Synthetic Crystals, 53(2024).

    [6] Z D XIE, F BO, J T LIN et al. Recent development in integrated lithium niobate photonics. Advances in Physics: X, 9(2024).

    [7] X H TIAN, M H SHANG, S N ZHU et al. Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges. Physics, 52(2023).

    [8] R G YANG, G CHEN. Thermal conductivity modeling of periodic two-dimensional nanocomposites. Physical Review B, 69(2004).

    [9] M SAADATIRAD, M H TAVAKOLI, H KHODAMORADI et al. Effect of the pulling, crystal and crucible rotation rate on the thermal stress and the melt-crystal interface in the Czochralski growth of germanium crystals. CrystEngComm, 23(2021).

    [10] C W LU, J C CHEN. Numerical simulation of thermal and mass transport during Czochralski crystal growth of sapphire. Crystal Research and Technology, 45(2010).

    [11] S YAO, J WANG, H LIU et al. Growth, optical and thermal properties of near-stoichiometric LiNbO3 single crystal. Journal of Alloys and Compounds, 455(2008).

    [12] D J TAO, G X ZHU, R S YAN et al. Czochralski growth of gadolinium gallium garnet (GGG) crystals. Chinese Journal of Quantum Electronics, 20(2003).

    [13] M H TAVAKOLI, H WILKE, N CRNOGORAC. Influence of the crucible bottom shape on the heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth. Crystal Research and Technology, 42(2007).

    [14] F MOKHTARI, A BOUABDALLAH, M ZIZI et al. Combined effects of crucible geometry and Marangoni convection on silicon Czochralski crystal growth. Crystal Research and Technology, 44(2009).

    [15] M H TAVAKOLI, E MOHAMMADI-MANESH, A OJAGHI. Influence of crucible geometry and position on the induction heating process in crystal growth systems. Journal of Crystal Growth, 311(2009).

    [16] H SAEEDI, M ASADIAN, S ENAYATI et al. The effect of crucible bottom deformation on the quality of Nd: GGG crystals grown by Czochralski method. Crystal Research and Technology, 46(2011).

    [17] H KHODAMORADI, M H TAVAKOLI, K MOHAMMADI. Influence of crucible and coil geometry on the induction heating process in Czochralski crystal growth system. Journal of Crystal Growth, 421, 66(2015).

    [18] T H U NGUYEN, J C CHEN, C C CHEN. Effects of different crucible shapes on heat and oxygen transport during continuous Czochralski silicon crystal growth. Journal of Crystal Growth, 626, 127474(2024).

    [19] J QIN, J SUN, Y X HAO et al. Effect of exposed crucible wall on the Czochralski growth of an LN crystal. CrystEngComm, 25(2023).

    [21] T TSUKADA, K KAKINOKI, M HOZAWA et al. Numerical and experimental studies on crack formation in LiNbO3 single crystal. Journal of Crystal Growth, 180(1997).

    [22] W Z ZHONG, H S LUO, S K HUA. Growth units and crystal morphology of lithium niobate (LN) crystal. Journal of Synthetic Crystals, 23(1994).

    [23] S K HUA, Y JAN, W Z ZHONG. Crystallisation habits of lithium niobate crystals. Journal of Synthetic Crystals, 12(1983).

    [24] N B MIN. Cellular interface and cellular structure due to constitutional supercooling in Czochralski growth LiNbO3 single crystals. Acta Physics Sinica, 28(1979).

    [25] N B MIN, F Q ZHOU. Experimental investigation of stability of planar crystal-melt interface and evolution of cellular interface during Czochralski growth of LiNbO3 single crystals doped with yttrium. Acta Physica Sinica, 35(1986).

    Tools

    Get Citation

    Copy Citation Text

    Yongxin HAO, Juan QIN, Jun SUN, Jinfeng YANG, Qinglian LI, Guijun HUANG, Jingjun XU. Impact of Crucible Bottom Shape on the Growth of Congruent Lithium Niobate Crystals by Czochralski Method[J]. Journal of Inorganic Materials, 2024, 39(10): 1167

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 23, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email: SUN Jun (sunjun@nankai.edu.cn)

    DOI:10.15541/jim20240207

    Topics