Journal of Inorganic Materials, Volume. 39, Issue 10, 1167(2024)

Impact of Crucible Bottom Shape on the Growth of Congruent Lithium Niobate Crystals by Czochralski Method

Yongxin HAO1,2, Juan QIN3, Jun SUN4、*, Jinfeng YANG4, Qinglian LI1,2, Guijun HUANG1,2, and Jingjun XU1
Author Affiliations
  • 11. School of Physics, Nankai University, Tianjin 300071, China
  • 22. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 33. Hangzhou Institute of Optics and Fine Mechanics, Hangzhou 311421, China
  • 44. Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
  • show less
    Figures & Tables(11)
    Schematic diagram of the 4-inch CLN crystal growth thermal field by Czochralski method Unit: mm
    Schematic diagram of the crucible bottom shape and position of the crucible relative to the induction coil for 7 times crystal growth
    Axial temperature gradients within the melt near the crystal-melt interface at different stages of body growth
    Axial temperature gradients within the crystal near the crystal-melt interface at different stages of body growth
    Schematic temperature distributions of crystal, melt and crucible at different stages of body growth
    Temperature distributions along the axis of central melt at different stage of body growth
    Pictures of crystals grown before and after promoting the position of the crucible relative to the induction coil using crucible with slipped bottom corner (experiments 1, 2)
    Pictures of crystals grown by using crucible with curved bottom corner (experiments 4-7)
    • Table 1. Operating parameters used for numerical simulation

      View table
      View in Article

      Table 1. Operating parameters used for numerical simulation

      DescriptionValue
      Crucible inner radius /mm160
      Crucible wall thickness /mm1.5
      Height and width of the slipped bottom corner /mm30
      Radius of the curved bottom corner /mm15
      Crystal density /(kg·m-3)4640
      Melt density /(kg·m-3)3530-3670
      Crystal thermal conductivity /(W·m-1·K-1)3.539
      Melt thermal conductivity /(W·m-1·K-1)4.5
      Melt point /℃1252
      Thermal expansion coefficient /K-11.7×10-4
      Crystal diameter /mm105
      Emissivity0.3
      Pulling rate /(mm·h-1)1.5
      Rotate rate /(r·min-1)7
    • Table 2. Axial temperature gradient at the melt centre near the crystal-melt interface (Gmelt)

      View table
      View in Article

      Table 2. Axial temperature gradient at the melt centre near the crystal-melt interface (Gmelt)

      L/mm Gmelt by using C-S /(℃·cm-1) Gmelt by using C-C/(℃·cm-1) Percentage of promotion/%
      58.059.4817.8
      205.757.2826.6
      353.785.6348.9
      501.393.80173.3
    • Table 3. Axial temperature gradient at the crystal centre near the crystal-melt interface (Gcrystal)

      View table
      View in Article

      Table 3. Axial temperature gradient at the crystal centre near the crystal-melt interface (Gcrystal)

      L/mm Gcrystal by using C-S/(℃·cm-1) Gcrystal by using C-C/(℃·cm-1) Percentage of promotion/%
      514.3516.9217.9
      2010.3612.8724.2
      357.0610.0742.6
      503.067.15133.7
    Tools

    Get Citation

    Copy Citation Text

    Yongxin HAO, Juan QIN, Jun SUN, Jinfeng YANG, Qinglian LI, Guijun HUANG, Jingjun XU. Impact of Crucible Bottom Shape on the Growth of Congruent Lithium Niobate Crystals by Czochralski Method[J]. Journal of Inorganic Materials, 2024, 39(10): 1167

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 23, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email: SUN Jun (sunjun@nankai.edu.cn)

    DOI:10.15541/jim20240207

    Topics