AEROSPACE SHANGHAI, Volume. 41, Issue 3, 47(2024)

Overview of Takeover Control Technology for Failed Spacecraft

Panfeng HUANG*... Yingbo LU, Fan ZHANG and Ya LIU |Show fewer author(s)
Author Affiliations
  • School of Astronautics, Northwestern Polytechnical University, Xi’an710072, , China
  • show less
    Figures & Tables(20)
    Diagram of the Kessler syndrome[3]
    The cosmos 2251- iridium 33 collision event[2]
    Diagram of the attitude/orbit takeover control for a failed spacecraft[8]
    Diagram of the takeover control by a rigid manipulator[25]
    Typical projects of the takeover control by rigid manipulators[26]
    Diagram of the takeover control for the failed spacecraft based on cellular robots[27]
    On-orbit demonstration validation scenario for the Phoenix Program[30]
    Diagram of the iBOSS project[32]
    System composition of the space cellular robot proposed by Northwestern Polytechnical University[32]
    Diagram of the takeover control by the traditional space net system[41]
    Validation test for the space net deployment by ESA RemoveDEBRIS[42-43]
    Diagram of the takeover control by a maneuverable space net robot[55]
    Diagram of the takeover control by a tethered space robot
    Diagram of the structural components of a space tethered robotic mechanism[63]
    Diagram of the electromagnetic-based takeover control for space targets[25]
    Experimental equipment of Japan JAXA eddy current takeover control system
    Ground experiment system of single-degree-of-freedom eddy current takeover control conducted by Northwestern Polytechnical University[70]
    Diagram of the takeover control based on non-contact electrostatic Coulomb forc[80]
    Diagram of the takeover control by an ion beam impact-based spacecraft[25]
    • Table 1. Comparison of various types of takeover control manners

      View table
      View in Article

      Table 1. Comparison of various types of takeover control manners

      接触

      类型

      控制手段名称优点缺点技术成熟度成本

      接触式

      接管

      控制

      刚性

      接触

      机械臂

      1) 连接刚度大;

      2) 地面试验验证容易

      1) 发生碰撞概率大;2) 控制过程相对复杂;

      3) 对相对位置和速度要求高

      细胞星

      1) 低成本;2) 可重构;

      3) 可快速批量部署等

      1) 细胞星攀附要求高;

      2) 多细胞星通信与协同控制精度要求高

      柔性

      接触

      空间飞网

      传统

      空间飞网

      1) 原理简单;2) 容错性好;

      3) 展开迅速

      1) 网形保持窗口期短;2) 易发生缠绕;

      3) 地面验证测试不易实现

      自主机动

      空间飞网

      1) 捕获距离远;2) 容错性好;

      3) 机动性高

      1) 结构复杂;2) 工程实现难度高;

      3) 地面验证测试不易实现

      空间绳系机器人

      1) 捕获距离远;2) 机动性好;

      3) 可多次循环使用

      1) 控制精度要求高;2) 可靠性相对较低;

      3) 需要配备有特定的捕获位置

      柔性毛刷

      1) 原理简单;

      2) 安全性较高

      1) 对服务航天器位置和姿态控制精度要求高;

      2) 对服务航天器机动性要求高

      非接触式

      接管

      控制

      电磁式1) 可随时对磁场大小、角度进行调节;2) 操控精度高

      1) 电能消耗大;

      2) 磁场强度受线圈圈数和尺寸限制

      静电库仑力

      1) 无需额外的化学燃;

      2) 仅消耗电能

      1) 需持续向目标发送电子或者离子;2) 对执行器的工作能力要求高;3) 控制精度要求高
      磁通钉扎力

      1) 机理明晰;

      2) 安全性较高

      1) 电能消耗大;

      2) 控制效果对目标航天器结构要求高

      羽流冲击离子束

      1) 目标适应性强;

      2) 无污染现象

      1) 效率低;2) 控制效果高度依赖目标形状;

      3) 不适用于GEO轨道

      气体

      1) 目标适应性强;

      2) 操控效率相对较高

      1) 效率低;2) 化学推进剂环境污染;

      3) 不适用于GEO轨道

    Tools

    Get Citation

    Copy Citation Text

    Panfeng HUANG, Yingbo LU, Fan ZHANG, Ya LIU. Overview of Takeover Control Technology for Failed Spacecraft[J]. AEROSPACE SHANGHAI, 2024, 41(3): 47

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 25, 2024

    Accepted: --

    Published Online: Sep. 3, 2024

    The Author Email:

    DOI:10.19328/j.cnki.2096-8655.2024.03.006

    Topics