Journal of Inorganic Materials, Volume. 36, Issue 4, 393(2021)
[1] YEH JIEN-WEI, CHEN SWE-KAI, LIN SU-JIEN et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloydesign concepts andoutcomes[J]. Advanced Engineering Materials, 6, 299-303(2004).
[2] CANTOR B, CHANG ITH, KNIGHT P et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 377, 213-218(2004).
[3] CHEN LEI, WANG KAI, SU WEN-TAO et al. Research progress of transition metal non-oxide high-entropy ceramics[J]. Journal of Inorganic Materials, 35, 748-758(2020).
[4] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nature Reviews Materials, 5, 295-309(2020).
[5] GILD J, ZHANG YUAN-YAO, HARRINGTON T et al. High- entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports, 6, 37946(2016).
[6] ZHANG RUI-ZHI, REECE M J. Review of high entropy ceramics: design, synthesis, structure and properties[J]. Journal of Materials Chemistry A, 7, 22148-22162(2019).
[9] YE BEI-LIN, WEN TONG-QI, CHU YAN-HUI. High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air[J]. Journal of the American Ceramic Society, 103, 500-507(2019).
[10] YAN XUE-LIANG, CONSTANTIN L, LU YONG-FENG et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity[J]. Journal of the American Ceramic Society, 101, 4486-4491(2018).
[11] ROST C M, BORMAN T, HOSSAIN M D et al. Electron and phonon thermal conductivity in high entropy carbides with variable carbon content[J]. Acta Materialia, 196, 231-239(2020).
[12] CHEN HENG, XIANG HUI-MIN, DAI FU-ZHI et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C[J]. Journal of Materials Science & Technology, 35, 1700-1705(2019).
[13] CSANÁDI T, VOJTKO M, DANKHÁZI Z et al. Small scale fracture and strength of high-entropy carbide grains during microcantilever bending experiments[J]. Journal of the European Ceramic Society, 40, 4774-4782(2020).
[14] WEI XIAO-FENG, LIU JI-XUAN, LI FEI et al. High entropy carbide ceramics from different starting materials[J]. Journal of the European Ceramic Society, 39, 2989-2994(2019).
[15] PENG CHONG, GAO XIANG, WANG MING-ZHI et al. Diffusion- controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity[J]. Applied Physics Letters, 114, 011905-1(2019).
[16] MOSKOVSKIKH D O, VOROTILO S, SEDEGOV A S et al. High- entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering[J]. Ceramics International, 46, 19008-19014(2020).
[18] WANG KAI, CHEN LEI, XU CHEN-GUANG et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. Journal of Materials Science & Technology, 39, 99-105(2020).
[19] CHICARDI E, GARCÍA-GARRIDO C, GOTOR F J. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route[J]. Ceramics International, 45, 21858-21863(2019).
[21] GILD J, KAUFMANN K, VECCHIO K et al. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics[J]. Scripta Materialia, 170, 106-110(2019).
[23] FENG LUN, FAHRENHOLTZ W G, HILMAS G E et al. Synthesis of single-phase high-entropy carbide powders[J]. Scripta Materialia, 162, 90-93(2019).
[24] YE BEI-LIN, NING SHAN-SHAN, LIU DA et al. One-step synthesis of coral-like high-entropy metal carbide powders[J]. Journal of the American Ceramic Society, 102, 6372-6378(2019).
[25] ZHOU JIE-YANG, ZHANG JIN-YONG, ZHANG FAN et al. High-entropy carbide: a novel class of multicomponent ceramics[J]. Ceramics International, 44, 22014-22018(2018).
[26] LU YAN, SUN YA-NAN, ZHANG TU-ZI et al. Polymer-derived Ta4HfC5 nanoscale ultrahigh-temperature ceramics: synthesis, microstructure and properties[J]. Journal of the European Ceramic Society, 39, 205-211(2019).
[27] SUN YA-NAN, YANG CHUN-MING, LU YAN et al. Transformation of metallic polymer precursor into nanosized HfTaC2 ceramics[J]. Ceramics International, 46, 6022-6028(2020).
[28] LI FEI, LU YING, WANG XIN-GANG et al. Liquid precursor- derived high-entropy carbide nanopowders[J]. Ceramics International, 45, 22437-22441(2019).
[29] LIU HONG-HUA, DU BIN, CHU YAN-HUI. Synthesis of the ternary metal carbide solid-solution ceramics by polymer-derived- ceramic route[J]. Journal of the American Ceramic Society, 103, 2970-2974(2020).
[30] DU BIN, LIU HONG-HUA, CHU YAN-HUI. Fabrication and characterization of polymer-derived high-entropy carbide ceramic powders[J]. Journal of the American Ceramic Society, 103, 4063-4068(2020).
[31] LU YAN, YE LI, HAN WEI-JIAN et al. Synthesis, characterization and microstructure of tantalum carbide-based ceramics by liquid polymeric precursor method[J]. Ceramics International, 41, 12475-12479(2015).
[32] LIU DAN, CAI TAO, QIU WEN-FENG et al. Synthesis, characterization, and microstructure of ZrC/SiC composite ceramics via liquid precursor conversion method[J]. Journal of the American Ceramic Society, 97, 1242-1247(2014).
Get Citation
Copy Citation Text
Yanan SUN, Li YE, Wenying ZHAO, Fenghua CHEN, Wenfeng QIU, Weijian HAN, Wei LIU, Tong ZHAO.
Category: RESEARCH PAPER
Received: Jul. 13, 2020
Accepted: --
Published Online: Nov. 24, 2021
The Author Email: Tong ZHAO (tzhao@iccas.ac.cn)