Optics and Precision Engineering, Volume. 30, Issue 14, 1669(2022)
Research on 3D reconstruction of microscope imaging based on Harris-SIFT algorithm and full convolution depth prediction
[1] M W CAO, L CAO, W JIA et al. Evaluation of local features for structure from motion. Multimedia Tools and Applications, 77, 10979-10993(2018).
[2] C WU. VisualSfM: A visual structure from motion system. http://www.cs.washington.edu/homes/ccwu/vsfm(2011).
[3] P MOULON, P MONASSE, R PERROT et al. OpenMVG: open multiple view geometry(2017).
[4] J L SCHÖNBERGER, J M FRAHM. Structure-from-motion revisited, 4104-4113(2016).
[5] Y FURUKAWA, J. AccuratePONCE. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1362-1376(2010).
[6] [6] 6蒋华强, 蔡勇, 张建生, 等. 基于改进SFM的三维重建算法研究[J]. 电子技术应用, 2019, 45(2): 88-92.JIANGH Q, CAIY, ZHANGJ S, et al. Research on 3D reconstruction algorithm based on improved SFM[J]. Application of Electronic Technique, 2019, 45(2): 88-92.(in Chinese)
[7] [7] 7李敏. 基于非朗伯光度立体的三维重建研究[D]. 杭州: 浙江大学, 2020.LIM. Non-lambertian photometric stereo for 3D reconstruction[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
[8] Y YAO, Z X LUO, S W LI et al. MVSNet: depth inference for unstructured multi-view stereo(2018).
[9] J L SCHÖNBERGER, E L ZHENG, J M FRAHM et al. Pixelwise view selection for unstructured multi-view stereo(2016).
[10] R CHEN, S F HAN, J XU et al. Point-based multi-view stereo network, 1538-1547(2019).
[11] Y YAO, Z X LUO, S W LI et al. Recurrent MVSNet for high-resolution multi-view stereo depth inference, 5520-5529(2019).
[12] X D GU, Z W FAN, S Y ZHU et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching, 2492-2501(2020).
[13] [13] 13张庆鹏, 曹宇. 室内场景下弱纹理物体三维重建算法的研究[J]. 激光与光电子学进展, 2021, 58(8): 0810017. doi: 10.3788/lop202158.0810017ZHANGQ P, CAOY. Research on three-dimensional reconstruction algorithm of weak textured objects in indoor scenes[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810017.(in Chinese). doi: 10.3788/lop202158.0810017
[14] [14] 14阳兰, 胡立坤, 吴浩楠. 融合彩色和光照信息的尺度不变特征变换图像匹配算法[J]. 广西大学学报(自然科学版), 2018, 43(6): 2197-2205.YANGL, HUL K, WUH N. Scale invariant feature transform image matching algorithm combining color and exposure information[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(6): 2197-2205.(in Chinese)
[15] C HARRIS, M STEPHENS. A combined corner and edge detector(1988).
[16] D G LOWE. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91-110(2004).
[17] [17] 17尚明姝, 王克朝. 一种改进的Harris与SIFT算子结合的图像配准算法[J]. 微电子学与计算机, 2018, 35(6): 132-134, 140.SHANGM S, WANGK C. Advanced image registration method based on Harris and SIFT algorithm[J]. Microelectronics & Computer, 2018, 35(6): 132-134, 140.(in Chinese)
[18] [18] 18卢鹏, 刘楷贇, 邹国良, 等. 基于多特征融合和卷积神经网络的无参考图像质量评价[J]. 液晶与显示, 2022, 37(1): 66-76. doi: 10.37188/CJLCD.2021-0175LUP, LIUK Y, ZOUG L, et al. No reference image quality assessment based on fusion of multiple features and convolutional neural network[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(1): 66-76.(in Chinese). doi: 10.37188/CJLCD.2021-0175
[19] [19] 19鲍文霞, 余国芬, 胡根生, 等. 基于马氏距离谱特征的图像匹配算法[J]. 华南理工大学学报(自然科学版), 2017, 45(10): 114-120, 128. doi: 10.1109/cisp-bmei.2017.8302019BAOW X, YUG F, HUG S, et al. Image matching algorithm based on mahalanobis-distance spectral features[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(10): 114-120, 128.(in Chinese). doi: 10.1109/cisp-bmei.2017.8302019
[20] [20] 20彭杰, 李磊民, 石繁荣. 无阈值改进随机抽样一致性点云配准算法[J]. 制造业自动化, 2020, 42(10): 72-76. doi: 10.3969/j.issn.1009-0134.2020.10.016PENGJ, LIL M, SHIF R. No-threshold improved random sample consensus point cloud registration algorithm[J]. Manufacturing Automation, 2020, 42(10): 72-76.(in Chinese). doi: 10.3969/j.issn.1009-0134.2020.10.016
[21] [21] 21陶易之. 基于增量式运动恢复结构的弱纹理目标三维重建[D]. 武汉: 武汉大学, 2018: 31-45.TAOY Z. 3D reconstruction of Texture-less Object Using Incremental Structure from Motion[D]. Wuhan: Wuhan University, 2018: 31-45.(in Chinese)
[22] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).
[23] K M HE, X Y ZHANG, S Q REN et al. Identity mappings in deep residual networks(2016).
[24] [24] 24魏丙财, 张立晔, 孟晓亮, 等. 基于深度残差生成对抗网络的运动图像去模糊[J]. 液晶与显示, 2021, 36(12): 1693-1701.WEIB C, ZHANGL Y, MENGX L, et al. Motion image deblurring based on depth residual generative adversarial network[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(12): 1693-1701.(in Chinese)
[25] J DENG, W DONG, R SOCHER et al. ImageNet: a large-scale hierarchical image database, 248-255(2009).
[26] M D ZEILER. ADADELTA: an adaptive learning rate method. arXiv prepront(2012).
[27] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612(2004).
[28] [28] 28刘杰, 游品鸿, 占建斌, 等. 改进SIFT快速图像拼接和重影优化[J]. 光学 精密工程, 2020, 28(9): 2076-2084. doi: 10.37188/OPE.20202809.2076LIUJ, YOUP H, ZHANJ B, et al. Improved SIFT fast image stitching and ghosting optimization algorithm[J]. Opt. Precision Eng., 2020, 28(9): 2076-2084.(in Chinese). doi: 10.37188/OPE.20202809.2076
Get Citation
Copy Citation Text
Baoxiang ZHANG, Zhenming YU, Qiuhui YANG. Research on 3D reconstruction of microscope imaging based on Harris-SIFT algorithm and full convolution depth prediction[J]. Optics and Precision Engineering, 2022, 30(14): 1669
Category: Modern Applied Optics
Received: Mar. 4, 2022
Accepted: --
Published Online: Sep. 6, 2022
The Author Email: YU Zhenming (yumingming@ vip.sina.com)