Journal of Inorganic Materials, Volume. 39, Issue 7, 793(2024)

Influence of RE-Si-Al-O Glass Phase on Microstructure and CMAS Corrosion Resistance of High Entropy Rare Earth Disilicates

Liuyuan LI*... Kaiming HUANG, Xiuyi ZHAO, Huichao LIU and Chao WANG |Show fewer author(s)
References(32)

[4] S J ZHU, M MIZUNO, Y NAGANO et al. Creep and fatigue behavior in an enhanced SiCf/SiC composite at high temperature. J. Am. Ceram. Soc., 81, 2269(1998).

[5] W A CURTIN. Theory of mechanical properties of ceramic-matrix composites. J. Am. Ceram. Soc., 74, 2837(1991).

[8] D M ZHU. Durability and CMAS resistance of advanced environmental barrier coatings systems for SiC/SiC ceramic matrix composites. J. Nucl. Mater., 8, 203(2010).

[9] D L POERSCHKE, D D HASS, S EUSTIS et al. Stability and CMAS resistance of ytterbium-silicate/hafnate EBCs/TBC for SiC composites. J. Am. Ceram. Soc., 98, 278(2015).

[10] Y WANG, J S MENG, S Y LIU et al. Environmental barrier coatingschallenges and opportunities. J. Aerosp. Sci. Technol., 6, 17(2018).

[12] K N LEE, D S FOX, N P BANSAL. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc., 25, 1705(2005).

[15] N MAIER, G RIXECKER, K G NICKEL. Formation and stability of Gd, Y, Yb and Lu disilicates and their solid solutions. J. Solid State Chem., 179, 1630(2006).

[16] Y X LUO, L C SUN, J M WANG et al. Material-genome perspective towards tunable thermal expansion of rare-earth di-silicates. J. Eur. Ceram. Soc., 38, 3547(2018).

[18] Z L TIAN, L Y ZHENG, Z J LI et al. Exploration of the low thermal conductivities of γ-Y2Si2O7, β-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 as novel environmental barrier coating candidates. J. Eur. Ceram. Soc., 36, 2813(2016).

[19] Z L TIAN, X M REN, Y M LEI et al. Corrosion of RE2Si2O7 (RE=Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures. J. Eur. Ceram. Soc., 39, 4245(2019).

[20] L R TURCER, A SENGUPTA, N P PADTURE. Low thermal conductivity in high-entropy rare-earth pyrosilicate solid-solutions for thermal environmental barrier coatings. Scr. Mater., 191, 40(2021).

[21] L C SUN, X M REN, Y X LUO et al. Exploration of the mechanism of enhanced CMAS corrosion resistance at 1500 °C for multicomponent (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 disilicate. Corros. Sci., 10, 110343(2022).

[22] X T GUO, Y L ZHANG, T LI et al. High-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7: a potential environmental barrier coating material. J. Eur. Ceram. Soc., 42, 3570(2022).

[23] L C SUN, Y X LUO, X M REN et al. A multicomponent γ-type (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 disilicate with outstanding thermal stability. Mater. Res. Lett., 8, 424(2020).

[24] X WANG, Y X HE, C WANG et al. Thermal performance regulation of high-entropy rare-earth disilicate for thermal environmental barrier coating materials. J. Am. Ceram. Soc., 2, 18456(2022).

[25] M WOLF, D E MACK, O GUILLON et al. Resistance of pure and mixed rare earth silicates against calcium-magnesium- aluminosilicate (CMAS): a comparative study. J. Am. Ceram. Soc., 103, 7056(2020).

[26] D L POERSCHKE, R W JACKSON, C G LEVI. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annu. Rev. Mater., 47, 297(2017).

[27] Y DONG, K REN, Q K WANG et al. Interaction of multicomponent disilicate (Yb0.2Y0.2Lu0.2Sc0.2Gd0.2)2Si2O7 with molten calcia-magnesia-aluminosilicate. J. Adv. Ceram., 11, 66(2022).

[28] Z Y CHEN, C C LIN, W ZHENG et al. Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping. Corros. Sci., 199, 110217(2022).

[29] L C SUN, Y X LUO, Z L TIAN et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium- magnesium- aluminosilicate (CMAS). Corros. Sci., 175, 108881(2020).

[30] L R TURCER, A R KRAUSE, H F GARCES et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part II, β-Yb2Si2O7 and β-Sc2Si2O7. J. Eur. Ceram. Soc., 38, 3914(2018).

[31] N L Ahlborg, D M ZHU, N L AHLBORG, D M ZHU. Calcium- magnesium aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings. Surf. Coat. Technol., 237, 79(2013).

[32] K M GRANT, S KRÄMER, J P A LÖFVANDER et al. CMAS degradation of environmental barrier coatings. Surf. Coat. Technol., 202, 653(2007).

[33] N N WU, Y L WANG, Y L TONG et al. Interaction of ytterbium monosilicate environmental barrier coating material with molten calcium-magnesium-aluminosilicate (CMAS). Corros. Sci., 211, 110864(2023).

[34] X WANG, M H CHENG, G Z XIAO et al. Preparation and corrosion resistance of high-entropy disilicate (Y0.25Yb0.25Er0.25-Sc0.25)2Si2O7 ceramics. Corros. Sci., 192, 109786(2021).

[35] Y X HE, G Z XIAO, C WANG et al. Improved thermal properties and CMAS corrosion resistance of rare-earth monosilicates by adjusting the configuration entropy with RE-doping. Corros. Sci., 226, 11664(2024).

[36] S X DENG, G HE, Z C YANG et al. Calcium-magnesium- alumina-silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2-Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings. J. Mater. Sci. Technol., 107, 259(2022).

[37] R I WEBSTER, E J OPILA. Viscosity of CaO-MgO-Al2O3-SiO2 (CMAS) melts: experimental measurements and comparison to model calculations. J. Non-Cryst. Solids., 584, 121508(2022).

[38] F SHIMIZU, H TOKUNAGA, N SAITO et al. Viscosity and surface tension measurements of RE2O3-MgO-SiO2 (RE=Y, Gd, Nd and La) melts. ISIJ Int., 46, 388(2006).

[39] G Z XIAO, Q Y SHEN, Y TIAN et al. Investigation on the relation of microstructures and CMAS corrosion resistance of high entropy RE disilicates. Corros. Sci., 227, 111727(2024).

[40] Y X HE, X WANG, C WANG et al. Significantly improved corrosion resistance of high-entropy rare-earth silicate multiphase ceramics against molten CMAS. J. Am. Ceram. Soc., 106, 2744(2023).

Tools

Get Citation

Copy Citation Text

Liuyuan LI, Kaiming HUANG, Xiuyi ZHAO, Huichao LIU, Chao WANG. Influence of RE-Si-Al-O Glass Phase on Microstructure and CMAS Corrosion Resistance of High Entropy Rare Earth Disilicates[J]. Journal of Inorganic Materials, 2024, 39(7): 793

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Jan. 30, 2024

Accepted: --

Published Online: Aug. 30, 2024

The Author Email: LI Liuyuan (liuyuanwuming@163.com)

DOI:10.15541/jim20240018

Topics