Journal of Semiconductors, Volume. 44, Issue 4, 041601(2023)

Layered double hydroxides as electrode materials for flexible energy storage devices

Qifeng Lin1,3 and Lili Wang1,2、*
Author Affiliations
  • 1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • show less
    Figures & Tables(16)
    (Color online) General composition of LDHs[25]. Copyright 2021, Elsevier Ltd.
    (Color online) SEM images of (a) H-NiCo LDH powder, (b) ZIF-67@ACC, and (c) H-NiCo LDH@ACC. (d, f) Capacity comparison curve of H-NiCo LDH@ACC and ACF. (e) Optical image of flexible H-NiCo LDH@ACC//AC devices[44]. Copyright 2019, Elsevier Ltd.
    (Color online) (a) Illustration of flexible Ni–Co LDH@rGO devices. (b) SEM image of 3D Ni–Co LDH@rGO. (c) Charge-discharge curves at different current densities and (d) Ragone plot for the Ni–Co LDH@// crumpled rGO device. (e) Cycle life and Coulombic efficiency curves for the hybrid device. (f–h) Application of flexible Ni–Co LDH@rGO devices[47]. Copyright 2020, Elsevier Ltd.
    (Color online) (a) Synthesis schematic of NiCo-OH/ZnO-NR/CNT-yarn fiber. (b) Schematic diagrams and photographs of the bending angles of a symmetric two-electrode supercapacitor device composed of two NiCo-OH/ZnONR/CNT-yarns at each bending angle. (c) CV curves of the symmetric supercapacitor at different bending angles and (d) capacitance retention after 1000 cycles at a bending angle of 150° and the scan rate of 100 mV/s[51]. Copyright 2020, Elsevier Ltd.
    (Color online) (a) Synthesis sequence diagram of MLDH@PAC. (b) Long-term coulombic efficiency and specific capacity in alternating bend-flat state[58]. Copyright 2019, American Chemical Society.
    (Color online) The (a) flow chart, (b) SEM and (c) TEM image of the GAL film. (d) Photographic images of the GAL film and ASFC device. (e) Photographic image, (f) CV and (g) GCD curves of GAL//GAL AFSC device at various bending angles[10]. Copyright 2022, Elsevier Ltd.
    (Color online) (a) Elemental mapping image of Co–Mn LDH. (b) Comparison of GCD curves of various devices. (c) Optical image of the flexible energy storage devices under bent angles. CV curves of flexible device under (d) 0–180° and (e) –30 to –180°. (f) Optical image of a flexible device unit application[63]. Copyright 2020, Elsevier Ltd.
    (Color online) (a) Schematic illustration of the CC@NiCo2-OH and CC@NiCo2AlX-LDH grown on carbon cloth. (b) Photographs of FASC bent at 0°, 45°, 90°, 180°. (c) GCD curves and (d) specific capacitance retention of the FASC at a current density of 2 A/g. (e) Comparison energy density of various energy storage device[72]. Copyright 2019, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.
    (Color online) (a) Schematic illustration of the synthesis process of NSPCs. (b) 120-cycle curves at different current density of 0.5 and 6 C. (c) Rate performance curves of NSPCs-800[81]. Copyright 2016, The Royal Society of Chemistry.
    (Color online) (a) Schematic diagram of TMOs@MXene hollow polyhedron. (b) TEM image of TMOs@MXene hollow polyhedron. (c) Rate performance of pristine Ti3C2Tx, CoO/Co2Mo3O8 and CoO/Co2Mo3O8@MXene anodes. (d) CoO/Co2Mo3O8@MXene's 1200 cycle stability curve under 2 A/g[76]. Copyright 2019, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.
    (Color online) (a) The charge-discharge capacity curve at the 1st, 2nd, and 5th laps and (b) cycling performance of CoFe-NO3–-LDH at 1 A/g. The (c) side view and (d) top view of Na migration model diagram. (e) The diffusion barrier profiles for Na migration along the path TC→TE→TC[87]. Copyright 2019, The Royal Society of Chemistry.
    (Color online) (a) The schematic illustration of box-in-box structure of Co/(NiCo)Se2. (b) Tafel plots, (c) cycle stability and (d) rate performance of the Co/(NiCo)Se2 nanocubes[77]. Copyright 2017, The Royal Society of Chemistry.
    (Color online) (a) Fabrication illustration of bulk TiO2 and TCNS. (b) TEM images of Zn–Ti LDH, (c–f) ultrahigh stability and a specific capacity of Zn–Ti LDH@PV[88]. Copyright 2021, Elsevier Ltd.
    (Color online) SEM images of (a) LDH, (b) LDH-S and (c) CDs@LDH-S. (d) Cycling performances of CDs and CDs@LDH-S at 1 A/g. (e) Rate performance at different current density of LDH, LDH-S and CDs@LDH-S. Cycling performance at (f) 0.1 A/g and (g) 0.5 A/g of LDH, LDH-S and CDs@LDH-S[94]. Copyright 2021, Elsevier Ltd.
    • Table 0. Electrochemical performances of various LDHs-based electrode materials in AIBs.

      View table
      View in Article

      Table 0. Electrochemical performances of various LDHs-based electrode materials in AIBs.

      MaterialBattery TypeCycling stability (cycle)/ Current densityRate performanceInitial coulombic efficiencyRef.
      ZnO/ZnAl2O4LIBs1275 mA·h/g (10th)/0.2 A/g[80]
      Nitrogen and sulfur co-doped porous carbonLIBs1175 mA·h/g (120th)/0.5 C360 mA·h/g at 30 C[81]
      CoO/Co2Mo3O8@MXeneLIBs545 mA·h/g (1200th)/2 A/g386.1 mA·h/g at 5 A/g71%[76]
      Multiphase Mn-doped Ni sulfides@rGOLIBs206.1 mA·h/g (50th)/0.1 A/g103.6 mA·h/g at 1 A/g68%[82]
      Co/(Ni, Co)Se2SIBs497 mA·h/g (80th)/0.2 A/g456 mA·h/g at 5 A/g80%[77]
      Multiphase Mn-doped Ni sufides@rGOSIBs206.1 mA·h/g (2000th)/0.5 A/g229.2 mA·h/g at 5 A/g[75]
      CoFe-NO3--LDHSIBs209 mA·h/g (200th)/1 A/g228 mA·h/g at at 2 A/g[87]
      TiO2 nanoparticles@CNSSIBs196.7 mA·h/g (2000th)/2 A/g197.2 mA·h/g at 10 A/g41%[88]
      MgFe-LDHKIBs371.6 mA·h/g (300th)/0.1 A/g144.5 mA·h/g at 10 A/g88%[94]
      CDs@LDH-SKIBs188 mA·h/g (8000th)/1 A/g172 mA·h/g at 5 A/g[95]
    • Table 0. Performance comparison of LDH-based electrodes for supercapacitors.

      View table
      View in Article

      Table 0. Performance comparison of LDH-based electrodes for supercapacitors.

      MaterialElectrolyteTest methodSpecific capacitance/current densityCapacitance retention (Cycle/current density)Energy density/ Power densityRef.
      Mn-doped Ni–Co LDH@polyaniline-derived carbon6 M KOHAll-solid-state flexible asymmetric supercapacitor1282.06 C/g/1 A/g82.66% (8000th/10 A/g)78.9 W·h/kg/ 1.55 kW/kg[58]
      Hollow Ni–Co LDH@ acidified carbon cloth2 M KOHFlexible free-standing asymmetric supercapacitor1377 mC/cm2/1 mA/cm270% (10000th/ 80 mA/cm2)0.0708 mW·h/cm2/ 0.7 mW/cm2[44]
      Ni–Co LDH@rGO3 M KOHAsymmetric supercapacitor2640 F/g/1 A/g80.2% (4000th)58.4 W·h/kg/3.73 kW/kg[47]
      NiCo-OH/ZnO-NR/ CNT-yarn1 M LiOHFlexible symmetric supercapacitor1278 F/g60.5% (7000th/ 30 Ma/cm2)1.38 μW·h/cm2/647 μW/cm2[51]
      rGO@Ag nanowire/ Ni-Al LDH6 M KOHAll-solid-state flexible asymmetric supercapacitor127.2 F/g/ 1 A/g83.2% (10000th/1 A/g)35.75 mW·h/cm3/ 1.01 W/cm3[10]
      Ni–Fe LDH@rGO@NF2 M KOHFlexible asymmetric supercapacitor1462.5 F/g/5 A/g64.7% (2000th/15 A/g)17.71 W·h/kg/348.49 W/kg[59]
      Co-Al LDH@Ni-Co LDH//CC6 M KOHFlexible quasisolid-state asymmetric supercapacitor2633. 6 F/g/ 1 A/g92.5% (5000th/4 A/g)57.8 W·h/kg/0.81 kW/kg[64]
      Co–Mn LDH@MnO23 M KOHFlexible asymmetric supercapacitor2325.01 F/g/1 A/g95% (10000th/ 30 mA/cm2)59.73 W·h/kg/1000.09 W/kg[63]
      CC@NiCo2Al LDH1 M KOHFlexible asymmetric supercapacitor1137 F/g/0.5 A/g91.2% (15000th/5 A/g)44 W·h/kg/ 462 W/kg[72]
      Zn–Mg–Al LDH@ Fe2O3/3D HPCNF3 M KOHAll-solid-state symmetric supercapacior3437 F/cm2/ 1 mA/cm2106.5% (40000th/ 50 mA/cm2)11.62 mW·h/cm3/ 9.999 mW/cm3[73]
    Tools

    Get Citation

    Copy Citation Text

    Qifeng Lin, Lili Wang. Layered double hydroxides as electrode materials for flexible energy storage devices[J]. Journal of Semiconductors, 2023, 44(4): 041601

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Articles

    Received: Nov. 15, 2022

    Accepted: --

    Published Online: Apr. 24, 2023

    The Author Email: Wang Lili (liliwang@semi.ac.cn)

    DOI:10.1088/1674-4926/44/4/041601

    Topics