Optics and Precision Engineering, Volume. 32, Issue 4, 578(2024)

Hyperspectral unmixing with shared endmember variability in homogeneous region

Ning WANG1... Wenxing BAO1,*, Kewen QU1,* and Wei FENG2 |Show fewer author(s)
Author Affiliations
  • 1School of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2School of Electronic Engineering, Xidian University,Xi'an710071, China
  • show less
    References(29)

    [1] [1] 童庆禧, 孟庆岩, 杨杭. 遥感技术发展历程与未来展望[J]. 城市与减灾, 2018(6): 2-11. doi: 10.3969/j.issn.1671-0495.2018.06.003TONGQ X, MENGQ Y, YANGH. Development and prospect of the remote sensing technology[J]. City and Disaster Reduction, 2018(6): 2-11.(in Chinese). doi: 10.3969/j.issn.1671-0495.2018.06.003

    [2] [2] 蓝金辉, 邹金霖, 郝彦爽, 等. 高光谱遥感影像混合像元分解研究进展[J]. 遥感学报, 2018, 22(1): 13-27. doi: 10.11834/jrs.20186502LANJ H, ZOUJ L, HAOY S, et al. Research progress on unmixing of hyperspectral remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22(1): 13-27.(in Chinese). doi: 10.11834/jrs.20186502

    [3] [3] 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5): 1062-1090. doi: 10.11834/jrs.20166179ZHANGB. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5): 1062-1090.(in Chinese). doi: 10.11834/jrs.20166179

    [4] J M BIOUCAS-DIAS, A PLAZA, N DOBIGEON et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 354-379(2012).

    [5] J W BOARDMAN, F A KRUSE, R O GREEN. Mapping Target Signatures via Partial Unmixing of AVIRIS Data(1995).

    [6] M E WINTER. N-FINDR: an Algorithm for Fast Autonomous Spectral End-Member Determination in Hyperspectral Data, 266-275(1999).

    [7] J M P NASCIMENTO, J M B DIAS. Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43, 898-910(2005).

    [8] D C HEINZ. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 39, 529-545(2001).

    [9] P V GIAMPOURAS, K E THEMELIS, A A RONTOGIANNIS et al. Simultaneously sparse and low-rank abundance matrix estimation for hyperspectral image unmixing. IEEE Transactions on Geoscience and Remote Sensing, 54, 4775-4789(2016).

    [10] A ZARE, K C HO. Endmember variability in hyperspectral analysis: addressing spectral variability during spectral unmixing. IEEE Signal Processing Magazine, 31, 95-104(2014).

    [11] M D IORDACHE, J M BIOUCAS-DIAS, A PLAZA. Sparse unmixing of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 49, 2014-2039(2011).

    [12] L DRUMETZ, J CHANUSSOT, C JUTTEN. Variability of the Endmembers in Spectral Unmixing: Recent Advances, 1-5(2016).

    [13] R A BORSOI, T IMBIRIBA, J C M BERMUDEZ et al. Spectral variability in hyperspectral data unmixing: a comprehensive review. IEEE Geoscience and Remote Sensing Magazine, 9, 223-270(2021).

    [14] D A ROBERTS, M GARDNER, R CHURCH et al. Mapping chaparral in the santa monica mountains using multiple endmember spectral mixture models. Remote Sensing of Environment, 65, 267-279(1998).

    [15] C A BATESON, G P ASNER, C A WESSMAN. Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis. IEEE Transactions on Geoscience and Remote Sensing, 38, 1083-1094(2000).

    [16] G TOCHON, L DRUMETZ, M A VEGANZONES et al. From Local to Global Unmixing of Hyperspectral Images to Reveal Spectral Variability, 1-5(2016).

    [17] O ECHES, N DOBIGEON, C MAILHES et al. Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery. IEEE Transactions on Image Processing, 19, 1403-1413(2010).

    [18] F SCHMIDT, A SCHMIDT, E TRÉGUIER et al. Implementation strategies for hyperspectral unmixing using Bayesian source separation. IEEE Transactions on Geoscience and Remote Sensing, 48, 4003-4013(2010).

    [19] X X DU, A ZARE, P GADER et al. Spatial and spectral unmixing using the beta compositional model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 1994-2003(2014).

    [20] P A THOUVENIN, N DOBIGEON, J Y TOURNERET. Hyperspectral unmixing with spectral variability using a perturbed linear mixing model. IEEE Transactions on Signal Processing, 64, 525-538(2016).

    [21] L DRUMETZ, M A VEGANZONES, S HENROT et al. Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability. IEEE Transactions on Image Processing, 25, 3890-3905(2016).

    [22] T IMBIRIBA, R A BORSOI, J C MOREIRA BERMUDEZ. Generalized linear mixing model accounting for endmember variability, 1862-1866(2018).

    [23] D F HONG, N YOKOYA, J CHANUSSOT et al. An augmented linear mixing model to address spectral variability for hyperspectral unmixing. IEEE Transactions on Image Processing, 28, 1923-1938(2019).

    [24] Z Q HUA, X R LI, S H CHEN et al. Hyperspectral unmixing with scaled and perturbed linear mixing model to address spectral variability. Journal of Applied Remote Sensing, 14(2020).

    [25] R A BORSOI, T IMBIRIBA, J C M BERMUDEZ. Deep generative endmember modeling: an application to unsupervised spectral unmixing. IEEE Transactions on Computational Imaging, 6, 374-384(2019).

    [26] S K SHI, M ZHAO, L J ZHANG et al. Probabilistic generative model for hyperspectral unmixing accounting for endmember variability. IEEE Transactions on Geoscience and Remote Sensing, 60, 5516915(1809).

    [27] S K SHI, L J ZHANG, Y ALTMANN et al. Deep generative model for spatial-spectral unmixing with multiple endmember priors. IEEE Transactions on Geoscience and Remote Sensing, 60, 5527214(2022).

    [28] M ZHAO, S K SHI, J CHEN et al. A 3-D-CNN framework for hyperspectral unmixing with spectral variability. IEEE Transactions on Geoscience and Remote Sensing, 60, 5521914(1914).

    [29] X XU, J LI, C S WU et al. Regional clustering-based spatial preprocessing for hyperspectral unmixing. Remote Sensing of Environment, 204, 333-346(2018).

    Tools

    Get Citation

    Copy Citation Text

    Ning WANG, Wenxing BAO, Kewen QU, Wei FENG. Hyperspectral unmixing with shared endmember variability in homogeneous region[J]. Optics and Precision Engineering, 2024, 32(4): 578

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 5, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: BAO Wenxing (bwx71@163.com), QU Kewen (kewen.qu@nmu.edu.cn)

    DOI:10.37188/OPE.20243204.0578

    Topics