Optics and Precision Engineering, Volume. 32, Issue 4, 578(2024)

Hyperspectral unmixing with shared endmember variability in homogeneous region

Ning WANG1, Wenxing BAO1、*, Kewen QU1、*, and Wei FENG2
Author Affiliations
  • 1School of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2School of Electronic Engineering, Xidian University,Xi'an710071, China
  • show less
    References(29)

    [1] [1] 童庆禧, 孟庆岩, 杨杭. 遥感技术发展历程与未来展望[J]. 城市与减灾, 2018(6): 2-11. doi: 10.3969/j.issn.1671-0495.2018.06.003TONGQ X, MENGQ Y, YANGH. Development and prospect of the remote sensing technology[J]. City and Disaster Reduction, 2018(6): 2-11.(in Chinese). doi: 10.3969/j.issn.1671-0495.2018.06.003

    [2] [2] 蓝金辉, 邹金霖, 郝彦爽, 等. 高光谱遥感影像混合像元分解研究进展[J]. 遥感学报, 2018, 22(1): 13-27. doi: 10.11834/jrs.20186502LANJ H, ZOUJ L, HAOY S, et al. Research progress on unmixing of hyperspectral remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22(1): 13-27.(in Chinese). doi: 10.11834/jrs.20186502

    [3] [3] 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5): 1062-1090. doi: 10.11834/jrs.20166179ZHANGB. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5): 1062-1090.(in Chinese). doi: 10.11834/jrs.20166179

    [4] BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 354-379(2012).

    [5] BOARDMAN J W, KRUSE F A, GREEN R O. Mapping Target Signatures via Partial Unmixing of AVIRIS Data[C](1995).

    [6] WINTER M E. N-FINDR: an Algorithm for Fast Autonomous Spectral End-Member Determination in Hyperspectral Data[C], 266-275(1999).

    [7] NASCIMENTO J M P, DIAS J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 43, 898-910(2005).

    [8] HEINZ D C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 39, 529-545(2001).

    [9] GIAMPOURAS P V, THEMELIS K E, RONTOGIANNIS A A et al. Simultaneously sparse and low-rank abundance matrix estimation for hyperspectral image unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 4775-4789(2016).

    [10] ZARE A, HO K C. Endmember variability in hyperspectral analysis: addressing spectral variability during spectral unmixing[J]. IEEE Signal Processing Magazine, 31, 95-104(2014).

    [11] IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Sparse unmixing of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 49, 2014-2039(2011).

    [12] DRUMETZ L, CHANUSSOT J, JUTTEN C. Variability of the Endmembers in Spectral Unmixing: Recent Advances[C], 1-5(2016).

    [13] BORSOI R A, IMBIRIBA T, BERMUDEZ J C M et al. Spectral variability in hyperspectral data unmixing: a comprehensive review[J]. IEEE Geoscience and Remote Sensing Magazine, 9, 223-270(2021).

    [14] ROBERTS D A, GARDNER M, CHURCH R et al. Mapping chaparral in the santa monica mountains using multiple endmember spectral mixture models[J]. Remote Sensing of Environment, 65, 267-279(1998).

    [15] BATESON C A, ASNER G P, WESSMAN C A. Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 38, 1083-1094(2000).

    [16] TOCHON G, DRUMETZ L, VEGANZONES M A et al. From Local to Global Unmixing of Hyperspectral Images to Reveal Spectral Variability[C], 1-5(2016).

    [17] ECHES O, DOBIGEON N, MAILHES C et al. Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery[J]. IEEE Transactions on Image Processing, 19, 1403-1413(2010).

    [18] SCHMIDT F, SCHMIDT A, TRÉGUIER E et al. Implementation strategies for hyperspectral unmixing using Bayesian source separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 48, 4003-4013(2010).

    [19] DU X X, ZARE A, GADER P et al. Spatial and spectral unmixing using the beta compositional model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 1994-2003(2014).

    [20] THOUVENIN P A, DOBIGEON N, TOURNERET J Y. Hyperspectral unmixing with spectral variability using a perturbed linear mixing model[J]. IEEE Transactions on Signal Processing, 64, 525-538(2016).

    [21] DRUMETZ L, VEGANZONES M A, HENROT S et al. Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability[J]. IEEE Transactions on Image Processing, 25, 3890-3905(2016).

    [22] IMBIRIBA T, BORSOI R A, MOREIRA BERMUDEZ J C. Generalized linear mixing model accounting for endmember variability[C], 1862-1866(2018).

    [23] HONG D F, YOKOYA N, CHANUSSOT J et al. An augmented linear mixing model to address spectral variability for hyperspectral unmixing[J]. IEEE Transactions on Image Processing, 28, 1923-1938(2019).

    [24] HUA Z Q, LI X R, CHEN S H et al. Hyperspectral unmixing with scaled and perturbed linear mixing model to address spectral variability[J]. Journal of Applied Remote Sensing, 14(2020).

    [25] BORSOI R A, IMBIRIBA T, BERMUDEZ J C M. Deep generative endmember modeling: an application to unsupervised spectral unmixing[J]. IEEE Transactions on Computational Imaging, 6, 374-384(2019).

    [26] SHI S K, ZHAO M, ZHANG L J et al. Probabilistic generative model for hyperspectral unmixing accounting for endmember variability[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5516915(1809).

    [27] SHI S K, ZHANG L J, ALTMANN Y et al. Deep generative model for spatial-spectral unmixing with multiple endmember priors[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5527214(2022).

    [28] ZHAO M, SHI S K, CHEN J et al. A 3-D-CNN framework for hyperspectral unmixing with spectral variability[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5521914(1914).

    [29] XU X, LI J, WU C S et al. Regional clustering-based spatial preprocessing for hyperspectral unmixing[J]. Remote Sensing of Environment, 204, 333-346(2018).

    Tools

    Get Citation

    Copy Citation Text

    Ning WANG, Wenxing BAO, Kewen QU, Wei FENG. Hyperspectral unmixing with shared endmember variability in homogeneous region[J]. Optics and Precision Engineering, 2024, 32(4): 578

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 5, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: Wenxing BAO (bwx71@163.com), Kewen QU (kewen.qu@nmu.edu.cn)

    DOI:10.37188/OPE.20243204.0578

    Topics