Optics and Precision Engineering, Volume. 32, Issue 4, 578(2024)

Hyperspectral unmixing with shared endmember variability in homogeneous region

Ning WANG1... Wenxing BAO1,*, Kewen QU1,* and Wei FENG2 |Show fewer author(s)
Author Affiliations
  • 1School of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2School of Electronic Engineering, Xidian University,Xi'an710071, China
  • show less
    Figures & Tables(22)
    Effect of different elements on endmembers
    Diagram of SEVU algorithm
    Datasets
    Effect of signal-to-noise ratio on algorithm performance
    Effect of parameters on SEVU algorithm performance
    Number of blocks in the image after superpixel segmentation
    Endmember bundles constructed by SEVU algorithm (Synthetic dataset SNR_30 dB)
    Abundance estimated by each algorithm (Synthetic dataset SNR_30 dB)
    Endmember bundles constructed by SEVU algorithm (Jasper Ridge)
    Abundance estimated by each algorithm (Jasper Ridge)
    Partial endmember bundles constructed by SEVU algorithm (Cuprite)
    Partial abundance estimated by each algorithm (Cuprite)
    Profiles of the objective function with the number of iterations of the algorithm
    Comparison of algorithm run times (s)
    • Table 1. Effect of number of superpixel blocks on mSAD, aRMSE, yRMSE

      View table
      View in Article

      Table 1. Effect of number of superpixel blocks on mSAD, aRMSE, yRMSE

      Blocks105021160111572499
      mSAD0.419 90.230 10.086 10.060 30.064 50.082 2
      aRMSE0.209 20.157 50.081 70.092 30.096 90.112 6
      yRMSE0.107 50.046 60.019 10.011 90.010 20.008 6
      Time/s7.746 716.876 718.817 143.747 296.265 9203.360 8
    • Table 1. [in Chinese]

      View table
      View in Article

      Table 1. [in Chinese]

      算法1:SEVU算法

      输入:

      YRL×N,YslicRL×q by SLIC,A0RK×N by FCLS,

      AslicRK×q by SLIC,M0RL×K by VCA, α,βγ,η,q,dM0=[dM1||dMq],dMiRL×K=0L×K,

      S0=[S1||Sq],SiRK×K=IK

      输出:

      ARK×N,MRL×K,Sslic=[S1||Sq],SiRK×K,

      dMslic=[dM1||dMq],dMiRL×K

      1.  i1,如果没达到停止条件执行(2-6):

      2.  从n=1,2,,q使用公式(16)~公式(20)依次求解anWn(A)Tn(A)Vn(A)Gn(A)

      3.  从l=1,2,,L使用公式(23)~公式(25)依次求解m˜lWlMVl(M)

      4.  从n=1,2,,q使用公式(27)公式(29)依次求解dMnWn(dM)Vn(dM)

      5.  从n=1,2,,q使用公式(31)求解Sn,使用公式(32)公式(33)依次求解Wn(S)Vn(S)

      6.  i=i+1

      7.  利用上述步骤求得的Aslic,M,dMslic,Sslic,在每一个超像素中,将求得的变异端元作为端元使用FCLS逐像元求解丰度A

    • Table 2. Evaluation results of each algorithm for mSAD (Synthetic dataset SNR_30 dB)

      View table
      View in Article

      Table 2. Evaluation results of each algorithm for mSAD (Synthetic dataset SNR_30 dB)

      AlgorithmProposedPLMMELMMGLMM
      Vegetation0.062 80.081 60.101 30.105 2
      Soil0.033 60.039 10.053 70.054 2
      Water0.160 10.189 10.524 30.264 2
      mSAD0.085 50.103 30.226 40.135 2
    • Table 3. Evaluation results of each algorithm for aRMSE and yRMSE (Synthetic dataset SNR_30 dB)

      View table
      View in Article

      Table 3. Evaluation results of each algorithm for aRMSE and yRMSE (Synthetic dataset SNR_30 dB)

      AlgorithmProposedFCLSSCLSUPLMMELMMGLMMALMM
      aRMSE0.056 20.060 90.074 70.058 80.061 40.059 50.063 8
      yRMSE0.012 90.014 70.011 60.007 20.003 80.000 30.000 1
    • Table 4. Evaluation results of each algorithm for mSAD (Jasper Ridge)

      View table
      View in Article

      Table 4. Evaluation results of each algorithm for mSAD (Jasper Ridge)

      AlgorithmProposedVCAPLMMELMMGLMM
      Tree0.088 50.148 10.144 70.148 00.148 0
      Water0.075 70.258 20.069 70.222 60.178 8
      Soil0.046 00.116 60.106 20.117 30.118 4
      Road0.031 00.090 10.049 90.089 90.089 1
      mSAD0.060 30.153 30.092 60.144 40.133 6
    • Table 5. Evaluation results of each algorithm for aRMSE and yRMSE (Jasper Ridge)

      View table
      View in Article

      Table 5. Evaluation results of each algorithm for aRMSE and yRMSE (Jasper Ridge)

      AlgorithmProposedFCLSSCLSUPLMMELMMGLMMALMM
      aRMSE0.092 30.123 70.110 10.116 50.126 10.124 80.115 7
      yRMSE0.011 90.011 70.010 40.006 80.003 10.000 20.000 1
    • Table 6. Evaluation results of each algorithm for yRMSE (Cuprite)

      View table
      View in Article

      Table 6. Evaluation results of each algorithm for yRMSE (Cuprite)

      AlgorithmProposedFCLSSCLSUPLMMELMMGLMMALMM
      yRMSE0.006 40.014 50.014 00.003 40.004 20.000 10.000 3
    • Table 7. Evaluation results of each algorithm for mSAD (Cuprite)

      View table
      View in Article

      Table 7. Evaluation results of each algorithm for mSAD (Cuprite)

      AlgorithmProposedVCAPLMMELMMGLMM
      Alunite0.127 60.129 30.184 70.129 60.129 8
      Andradite0.077 40.081 50.144 20.058 80.066 1
      Buddingtonite0.118 30.114 90.113 80.114 90.114 8
      Dumortierite0.077 60.064 10.078 00.064 20.064 2
      Kaolinite10.067 10.083 90.122 00.081 00.079 5
      Kaolinite20.049 20.069 40.068 80.069 90.070 4
      Muscovite0.152 40.083 00.196 10.083 50.083 7
      Montmorillonite0.048 60.049 80.078 70.052 10.052 4
      Nontronite0.097 40.073 40.094 80.073 30.073 4
      Pyrope0.053 20.209 50.228 90.209 60.209 4
      Sphene0.254 50.300 10.050 20.300 20.300 1
      Chalcedony0.080 50.144 40.061 80.144 50.144 7
      mSAD0.100 30.117 00.118 70.115 10.115 7
    Tools

    Get Citation

    Copy Citation Text

    Ning WANG, Wenxing BAO, Kewen QU, Wei FENG. Hyperspectral unmixing with shared endmember variability in homogeneous region[J]. Optics and Precision Engineering, 2024, 32(4): 578

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 5, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: BAO Wenxing (bwx71@163.com), QU Kewen (kewen.qu@nmu.edu.cn)

    DOI:10.37188/OPE.20243204.0578

    Topics