Optics and Precision Engineering, Volume. 31, Issue 23, 3414(2023)

Bionic tracing of human and robotic arm based on FBG's wavelength-electric conversion

Haoxiang WANG1...2, Yan FENG1,2,*, Ruizhi PAN1,2, Hongpu ZHANG1,2, Yilin ZHOU1,2, Genliang XIONG1,2, and Hua ZHANG12 |Show fewer author(s)
Author Affiliations
  • 1Robotics Institute, School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai20620, China
  • 2Shanghai Collaborative Innovation Center of Intelligent Manufacturing Robot Technology for Large Components, Shanghai0160, China
  • show less
    References(28)

    [1] J PALEP. Robotic assisted minimally invasive surgery. Journal of Minimal Access Surgery, 5, 1(2009).

    [2] [2] 胡炼, 王志敏, 汪沛, 等. 基于激光感知的农业机器人定位系统[J]. 农业工程学报, 2023, 39(5):1-7. doi: 10.11975/j.issn.1002-6819.202211144HUL, WANGZH M, WANGP, et al. Agricultural robot positioning system based on laser sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(5):1-7.(in Chinese). doi: 10.11975/j.issn.1002-6819.202211144

    [3] [3] 李振, 赵欢, 王辉, 等. 机器人磨抛加工接触稳态自适应力跟踪研究[J]. 机械工程学报, 2022, 58(9): 200-209. doi: 10.3901/jme.2022.09.200LIZH, ZHAOH, WANGH, et al. Research on contact steady-state adaptive force tracking of robot grinding and polishing[J]. Journal of Mechanical Engineering, 2022, 58(9): 200-209.(in Chinese). doi: 10.3901/jme.2022.09.200

    [4] [4] 王仕强, 于佩航, 喻建胜, 等. 放喷管线自动打磨爬行机器人设计与试验[J]. 机械设计与研究, 2023, 39(1): 22-25, 30.WANGSH Q, YUP H, YUJ SH, et al. Design and test of automatic grinding crawling robot for relief pipeline[J]. Machine Design & Research, 2023, 39(1): 22-25, 30.(in Chinese)

    [5] [5] 张凯,张尚盈,陈皓晖,等.水陆两栖仿生机器人水下步态生成研究[J/OL].机械科学与技术,2023:1-6.ZHANGK,ZHANGS Y,CHENH H, et al. Research on underwater gait generation of the amphibious bionic robot[J/OL]. Mechanical Science and Technology for Aerospace Engineering, 2023:1-6. (in Chinese)

    [6] [6] 高勇, 陈伟海, 陆震, 等. 蟑螂机器人仿生机理及运动控制[J]. 机械工程学报, 2010, 46(13):91-99. doi: 10.3901/jme.2010.13.091GAOY, CHENW H, LUZH, et al. Bionic mechanism and locomotion control for a cockroach robot[J]. Journal of Mechanical Engineering, 2010, 46(13):91-99. (in Chinese). doi: 10.3901/jme.2010.13.091

    [7] [7] 黄品高,黄剑平,黄博俊, 等.实现下肢假肢智能仿生控制的神经功能重建及行走意图识别方法[J].中国科学基金,2021,35(S1):227-235.HUANGP G, HUANGJ P, HUANGB J, et al. The methods of neuromuscular function reinnervation and ambulation-intention recognition of lower-limb amputees to realize the intelligent and bionic control of powered prosthetic legs[J]. Fundamental Research Science Foundation in China,2021,35(S1):227-235. (in Chinese)

    [8] [8] 晏益朋,余城洋,熊露婧,等.一种基于离散时域模型的单相PWM整流器控制参数多目标优化设计方法[J].电工技术学报,2023(38):1-12.YANY P, YUCH Y, XIONGL J, et al. A multi-objective controller parameter design optimization method of single-phase PWM rectifier with discrete-time domain model [J]. Transactions of China Electrotechnical Society,2023(38):1-12. (in Chinese)

    [9] [9] 张洁, 何文涛, 冯华星. 基于直流无刷电机的PWM电路设计[J]. 微电子学与计算机, 2021, 38(3): 84-88.ZHANGJ, HEW T, FENGH X. The design of PWM circuit based on DC brushless motor[J]. Microelectronics & Computer, 2021, 38(3): 84-88.(in Chinese)

    [10] [10] 史晓娟, 姚兵, 王磊, 等. 基于STM32和LabVIEW的嵌入式可编程控制系统[J]. 仪表技术与传感器, 2023(4): 97-101. doi: 10.3969/j.issn.1002-1841.2023.04.020SHIX J, YAOB, WANGL, et al. Embedded programmable control system based on STM32 and LabVIEW[J]. Instrument Technique and Sensor, 2023(4): 97-101.(in Chinese). doi: 10.3969/j.issn.1002-1841.2023.04.020

    [11] [11] 吴凯, 周悦, 郭威, 等. 海岸带履带机器人控制系统的研究与设计[J]. 制造业自动化, 2022, 44(11):24-28. doi: 10.3969/j.issn.1009-0134.2022.11.007WUK, ZHOUY, GUOW, et al. Research and design of the control system of coastal track robot[J]. Manufacturing Automation, 2022, 44(11):24-28.(in Chinese). doi: 10.3969/j.issn.1009-0134.2022.11.007

    [12] H ZHANG, D Z ZHANG, Z H WANG et al. Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human-computer interaction. ACS Applied Materials & Interfaces, 15, 5128-5138(2023).

    [13] [13] 卢思彤, 李柏晨, 阎吉雅, 等. 柔性仿生手指关节的触觉力/角度感知[J]. 光学 精密工程, 2023, 31(4): 470-478. doi: 10.37188/OPE.20233104.0470LUS T, LIB CH, YANJ Y, et al. A tactile force/Angle perception method for flexible humanoid finger joints[J]. Opt. Precision Eng., 2023, 31(4): 470-478.(in Chinese). doi: 10.37188/OPE.20233104.0470

    [14] Q S AI, M Y ZHAO, K CHEN et al. Flexible coding scheme for robotic arm control driven by motor imagery decoding. Journal of Neural Engineering, 19(2022).

    [15] [15] 赵雪.基于手臂姿态和视觉的遥操作人机协作研究[D].重庆:重庆大学,2021.ZHAOX. Research on Human-Robot Collaboration of Teleoperation Based on Arm Posture and Vision[D]. Chongqing: Chonqqing University,2021.

    [16] [16] 刘正雄, 司继康, 陈刚, 等. 面向遥操作手眼协调的虚拟仿真交互控制方法[J]. 系统工程与电子技术, 2020, 42(5):1146-1151. doi: 10.3969/j.issn.1001-506X.2020.05.23LIUZh X, SIJ K, CHENG, et al. Interaction control method of virtual simulation for hand-eye coordination in teleoperation[J]. Systems Engineering and Electronics, 2020, 42(5):1146-1151. (in Chinese). doi: 10.3969/j.issn.1001-506X.2020.05.23

    [17] [17] 葛俊彦, 史金龙, 周志强, 等. 基于三维检测网络的机器人抓取方法[J]. 仪器仪表学报, 2021, 42(8): 146-153.GEJ Y, SHIJ L, ZHOUZH Q, et al. A robotic grasping method based on three-dimensional detection network[J]. Chinese Journal of Scientific Instrument, 2021, 42(8): 146-153.(in Chinese)

    [18] D SANDRA, S JOÃO, C JAIME. Optimized in-vehicle multi person human body pose detection. Procedia Computer Science, 204, 479-487(2022).

    [19] T KHAN. An intelligent baby monitor with automatic sleeping posture detection and notification. AI, 2, 290-306(2021).

    [20] [20] 郭永兴, 张航, 熊丽, 等. 基于光纤布拉格光栅的扑翼机器人三维扑动变形测量[J]. 光学 精密工程, 2023, 31(9): 1304-1313. doi: 10.37188/OPE.20233109.1304GUOY X, ZHANGH, XIONGL, et al. Fiber Bragg grating based 3D flutter deformation measurement of flapping wing robot[J]. Opt. Precision Eng., 2023, 31(9): 1304-1313.(in Chinese). doi: 10.37188/OPE.20233109.1304

    [21] Y FENG, H LIU, P LIU. Assessment for two-dimensional sliding based on cantilever beams with optical fiber Bragg gratings. Optical Fiber Technology, 67, 102729(2021).

    [22] Y GUO, J ZHU, L XIONG et al. Finger motion detection based on optical fiber Bragg grating with polyimide substrate. Sensors and Actuators A: Physical, 338, 113482(2022).

    [23] [23] 徐国权, 熊代余. 光纤光栅传感技术在工程中的应用[J]. 中国光学, 2013, 6(3): 306-317. doi: 10.3788/co.20130603.0306XUG Q, XIONGD Y. Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Journal of Optics, 2013, 6(3): 306-317.(in Chinese). doi: 10.3788/co.20130603.0306

    [24] L Q LI, R J HE, M S SOARES et al. Embedded FBG-based sensor for joint movement monitoring. IEEE Sensors Journal, 21, 26793-26798(2021).

    [25] T APIWATTANADEJ, B J CHUN, H LEE et al. Stability test of the silicon Fiber Bragg Grating embroidered on textile for joint angle measurement, 10449, 47-52(2017).

    [26] A F GONCALVES, P M MENDES et al. FBG sensing glove for monitoring hand posture. IEEE Sensors Journal, 11, 2442-2448(2011).

    [27] M ZALTIERI, C MASSARONI, DLO PRESTI et al. A wearable device based on a fiber Bragg grating sensor for low back movements monitoring. Sensors (Basel, Switzerland), 20, 3825(2020).

    [28] A D KERSEY, M A DAVIS, H J PATRICK et al. Fiber grating sensors. Journal of Lightwave Technology, 15, 1442-1463(1997).

    Tools

    Get Citation

    Copy Citation Text

    Haoxiang WANG, Yan FENG, Ruizhi PAN, Hongpu ZHANG, Yilin ZHOU, Genliang XIONG, Hua ZHANG. Bionic tracing of human and robotic arm based on FBG's wavelength-electric conversion[J]. Optics and Precision Engineering, 2023, 31(23): 3414

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 5, 2023

    Accepted: --

    Published Online: Jan. 5, 2024

    The Author Email: FENG Yan (xmfy0833@sina.com)

    DOI:10.37188/OPE.20233123.3414

    Topics