Infrared and Laser Engineering, Volume. 52, Issue 8, 20230390(2023)
Research progress of AlGaN-based DUV μLED (invited)
[2] [2] Kojima K, Yoshida Y, Shiraiwa M, et al. 1.6Gbps LEDbased ultraviolet communication at 280 nm in direct sunlight[C]2018 European Conference on Optical Communication (ECOC), 2018.
[8] D Lee, J W Lee, J Jang, et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nano-patterned AlN/sapphire substrates. Applied Physics Letters, 110, 191103(2017).
[9] F Brunner, H Protzmann, M Heuken, et al. High-temperature growth of AlN in a production scale 11×2″ MOVPE reactor. Physica Status Solidi C, 5, 1799-1801(2008).
[13] H K Cho, N Susilo, M Guttmann, et al. Enhanced wall plug efficiency of AlGaN-based Deep-UV LEDs Using Mo/Al as p-Contact. IEEE Photonics Technology Letters, 32, 891-894(2020).
[14] P Tian, J J D McKendry, Z Gong, et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Applied Physics Letters, 101, 231110(2012).
[16] H Hirayama. Research status and prospects of deep ultraviolet devices. Journal of Semiconductors, 40, 120301(2019).
[18] S Liang, W Sun. Recent advances in packaging technologies of AlGaN-based deep ultraviolet light-emitting diodes. Advanced Materials Technologies, 7, 2101502(2022).
[19] P Tian, X Shan, S Zhu, et al. AlGaN ultraviolet Micro-LEDs. IEEE Journal of Quantum Electronics, 58, 3300214(2022).
[20] [20] Siegel A M, Shaw G A, Model J. Shtrange communication with ultraviolet LEDs[C]SPIE, 2004, 5530: 182193.
[24] W Yang, S Zhang, J J D Mckendry, et al. Size-dependent capacitance study on InGaN-based micro-light-emitting diodes. Journal of Applied Physics, 116, 044512(2014).
[28] [28] MacLure D M, Xie E, Herrnsdf J, et al. Gbs optical wireless communications up to 17 meters using a UVC microlightemitting diode[C]2022 IEEE Photonics Conference, 2022.
[30] [30] Alkhazragi O, Hu F, Zou P, et al. 2.4Gbps ultravioletC solarblind communication based on probabilistically shaped DMT modulation [C]Optical Fiber Communication Conference, 2020.
[32] [32] Yoshida Y, Kojima K, Shiraiwa M, et al. An outdo evaluation of 1 Gbps optical wireless communication using AlGaNbased LED in 280 nm b[C]2019 Conference on Lasers ElectroOptics, 2019.
[33] [33] Sun Z, Zhang L, Qin Y, et al. 1 Mbps NLOS solarblind ultraviolet communication system based on UVLED array[C]Proceedings SPIE, 2018, 10617: 106170O.
[34] Y Yang, X Chen, B You, et al. Design of solar blind ultraviolet LED real-time video transmission system. Infrared and Laser Engineering, 47, 1022001(2018).
[39] [39] Maclure D M, McKendry J J D, Herrnsdf J, et al. Sizedependent acterization of deep UV microlightemitting diodes[C]2020 IEEE Photonics Conference (IPC), IEEE, 2020: 12.
[40] Z Qian, D Li, F Hu, et al. Size-dependent UV-C communication performance of AlGaN Micro-LEDs and LEDs. Journal of Lightwave Technology, 40, 7289-7296(2022).
[42] S Zhang, R He, Y Duo, et al. Plasmon-enhanced deep ultraviolet Micro-LED arrays for solar-blind communications. Optics Letters(2023481538413844).
[43] H Yu, M H Memon, H Jia, et al. Deep-ultraviolet LEDs incorporated with SiO2-based microcavities toward high-speed ultraviolet light communication. Advanced Optical Materials, 10, 2201738(2022).
[46] R Floyd, M Gaevski, K Hussain, et al. Enhanced light extraction efficiency of micropixel geometry AlGaN DUV light-emitting diodes. Applied Physics Express, 14, 084002(2021).
[47] L Guo, Y Guo, J Yang, et al. 275 nm deep ultraviolet AlGaN-based micro-LED arrays for ultraviolet communication. IEEE Photonics Journal, 14, 8202905(2022).
[48] N Trivellin, D Monti, Santi C De, et al. Current induced degradation study on state of the art DUV LEDs. Microelectronics Reliability, 88-90, 868-872(2018).
[51] [51] Shatalov M, Gong Z, Gaevski M, et al . Reliability of AlGaNbased deep UV LEDs on sapphire [C] Proceedings SPIE, 2006, 6134: 61340P.
[59] Y Zheng, Y Zhang, J Zhang, et al. Effects of meshed p-type contact structure on the light extraction effect for deep ultraviolet flip-chip light-emitting diodes. Nanoscale Research Letters, 14, 149(2019).
[68] J Y Lin, H X Jiang. Optical polarization in c-plane Al-rich AlN/Al
[70] Q Chen, H Zhang, J Dai, et al. Enhanced the optical power of AlGaN-based deep ultraviolet light-emitting diode by optimizing mesa sidewall angle. IEEE Photonics Journal, 10, 6100807(2018).
[71] J J Wierer, A A Allerman, I Montaño, et al. Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes. Applied Physics Letters, 105, 061106(2014).
[76] Y Zhang, R Meng, Z H Zhang, et al. Effects of inclined sidewall structure with bottom metal air cavity on the light extraction efficiency for AlGaN-based deep ultraviolet light-emitting diodes. IEEE Photonics Journal, 10, 8200809(2012).
[77] [77] Guo Y, Zhang Y, Yan J, et al. Enhancement of light extraction on AlGaNbased deepultraviolet lightemitting diodes using a sidewall reflection method[C]2016 13th China International Fum on Solid State Lighting: International Fum on Wide Bgap Semiconducts China (SSLChina: IFWS), IEEE, 2016: 127130.
[78] Y Zheng, J Zhang, L Chang, et al. Understanding omni-directional reflectors and nominating more dielectric materials for deep ultraviolet light-emitting diodes with inclined sidewalls. Journal of Applied Physics, 128, 093106(2020).
[81] H S Chen, D M Yeh, C F Lu, et al. Mesa-size-dependent color contrast in flip-chip blue/green two-color InGaN/GaN multi-quantum-well micro-light-emitting diodes. Applied Physics Letters, 89, 093501(2006).
[86] N Maeda, M Jo, H Hirayama. Improving the efficiency of AlGaN Deep-UV LEDs by using highly reflective Ni/Al p-type electrodes. Physica Status Solidi A, 8, 1901430(2018).
[88] T H Lee, T H Park, H W Shin, et al. Smart wide-bandgap omnidirectional reflector as an effective hole-injection electrode for deep-UV light-emitting diodes. Advanced Optical Materials, 8, 1901430(2020).
[91] R Floyd, M Gaevski, M D Alam, et al. An opto-thermal study of high brightness 280 nm emission AlGaN micropixel light-emitting diode arrays. Applied Physics Express, 14, 014002(2021).
[93] W Sun, M Shatalov, J Deng, et al. Efficiency droop in 245-247 nm AlGaN light-emitting diodes with continuous wave 2 mW output power. Applied Physics Letters, 96, 061102(2010).
[96] S Deng, Z Chen, M Li, et al. Variable temperature thermal droop characteristics of 255 nm UV LED. Applied Physics Letters, 121, 031104(2022).
Get Citation
Copy Citation Text
Zhaoqiang Liu, Tong Jia, Xiangyu Xu, Chunshuang Chu, Yonghui Zhang, Zihui Zhang. Research progress of AlGaN-based DUV μLED (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230390
Category:
Received: May. 12, 2023
Accepted: --
Published Online: Oct. 19, 2023
The Author Email: Zhang Zihui (zh.zhang@hebut.edu.cn)