Optics and Precision Engineering, Volume. 31, Issue 17, 2534(2023)

Trajectory planning scheme for ultra-precision system

Ailin LI1,2 and Jing LI1,2、*
Author Affiliations
  • 1Institute of Microelectronics, Chinese Academy of Sciences, Beijing00029, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • show less
    Figures & Tables(17)
    Proposed trajectory planning scheme
    Individual motion cycle of stage
    Simplified model of stage's control system
    Typical fourth-order motion trajectory
    Tuning feedback controller settings using improved differential evolutionary algorithm[18]
    Flow chart trajectory planning algorithm[4,12]
    Optimization results of Monte-Carlo algorithm with respect to parameters
    Distribution of 30 times optimization result by Monte-Carlo algorithm
    Comparison of tuning efficiency
    Identification results in x direction of stage
    Comparison of experiment results
    • Table 1. Parameters of stage's model

      View table
      View in Article

      Table 1. Parameters of stage's model

      ParametersValue
      m1/kg5
      m2/kg20
      h/mm20
      τ/s1×10-4
      Ts/s2×10-4
      ω/Hz450
      ζ0.03
      Jy/(kg·m)0.10
      Jz/(kg·m)0.11
    • Table 2. Parameters of proposed optimization method

      View table
      View in Article

      Table 2. Parameters of proposed optimization method

      ParametersValue
      NP50
      Q

      kP105,107,

      kI102,104,kD10,103

      F0.8
      CR0.6
      MC10
      N104
      ρ0.3
      MAX_FES20
    • Table 3. Parameters of controller

      View table
      View in Article

      Table 3. Parameters of controller

      Controller parametersTrial-and-error methodMethod in section 4.2
      β12525
      β22.50×10-32.50×10-3
      β34.94×10-64.94×10-6
      kP1.38×1066.43×106
      kI7002.22×103
      kD5.70×1039.25×103
      PID parameter tuning times72550
    • Table 4. Constraints of trajectory dynamics modified using trial-and-error method

      View table
      View in Article

      Table 4. Constraints of trajectory dynamics modified using trial-and-error method

      Parameter1st2nd3rd
      Iterations1 8001 0205 309
      MA/nm 1.482.912.91
      Time/s0.325 00.358 60.358 6
      smax/m0.000 30.000 320.000 32
      vmax/(m·s-1)0.0010.0010.001
      amax/(m·s-2)0.40.120.1
      jmax/(m·s-3)205.55.2
      dmax/(m·s-4)2 000555575
    • Table 5. Constraints of trajectory dynanics modified using Monte-Carlo method

      View table
      View in Article

      Table 5. Constraints of trajectory dynanics modified using Monte-Carlo method

      Parameter1st2nd3rd
      Iterations122625
      MA/nm0.1340.1340.134
      L/μm277276.4280.6
      Time/s0.356 00.351 20.352 8
      smax/m3.278 7×10-43.275 9×10-43.276 7×10-4
      vmax/(m·s-1)0.0010.0010.001
      amax/(m·s-2)0.281 90.110 10.311 6
      jmax/(m·s-3)6.401 813.397 79.417 2
      dmax/(m·s-4)2 0432 4082 224
    • Table 6. Comparison of experiment results

      View table
      View in Article

      Table 6. Comparison of experiment results

      方 案MA/nmMSD/nm
      本文轨迹规划1.441.25
      传统工程调试1.801.55
    Tools

    Get Citation

    Copy Citation Text

    Ailin LI, Jing LI. Trajectory planning scheme for ultra-precision system[J]. Optics and Precision Engineering, 2023, 31(17): 2534

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Micro/Nano Technology and Fine Mechanics

    Received: Jan. 16, 2023

    Accepted: --

    Published Online: Oct. 9, 2023

    The Author Email: LI Jing (lijing2018@ime.ac.cn)

    DOI:10.37188/OPE.20233117.2534

    Topics