International Journal of Extreme Manufacturing, Volume. 5, Issue 1, 12006(2023)
Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: review and outlook
[1] [1] Brotherton S D 2013 Introduction to Thin Film Transistors: Physics and Technology of TFTs (New York: Springer) pp 1–5
[2] [2] Kamiya T and Hosono H 2010 Material characteristics and applications of transparent amorphous oxide semiconductors NPG Asia Mater. 2 15–22
[3] [3] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors Nature 432 488–92
[4] [4] Kamiya T, Nomura K and Hosono H 2009 Electronic structures above mobility edges in crystalline and amorphous In-Ga-Zn-O: percolation conduction examined by analytical model J. Disp. Technol. 5 462–7
[5] [5] Sheng J Z, Jeong H J, Han K L, Hong T and Park J S 2017 Review of recent advances in flexible oxide semiconductor thin-film transistors J. Inf. Disp. 18 159–72
[6] [6] Shiah Y S, Sim K, Shi Y H, Abe K, Ueda S, Sasase M, Kim J and Hosono H 2021 Mobility–stability trade-off in oxide thin-film transistors Nat. Electron. 4 800–7
[7] [7] Matsuda T, Umeda K, Kato Y, Nishimoto D, Furuta M and Kimura M 2017 Rare-metal-free high-performance Ga-Sn-O thin film transistor Sci. Rep. 7 44326
[8] [8] ParkJS,KimK,ParkYG,MoYG,KimHDandJeongJK 2009 Novel ZrInZnO thin-film transistor with excellent stability Adv. Mater. 21 329–33
[9] [9] Woo H and Jeon S 2017 Microsecond pulse I-V approach to understanding defects in high mobility bi-layer oxide semiconductor transistor Sci. Rep. 7 8235
[10] [10] Chong E, Chun Y S and Lee S Y 2011 Effect of trap density on the stability of SiInZnO thin-film transistor under temperature and bias-induced stress Electrochem. Solid-State Lett. 14 H96
[11] [11] Fan WT, LiuPT, Kuo PY, ChangCM,LiuIHandKuo Y 2021 Numerical analysis of oxygen-related defects in amorphous In-W-O nanosheet thin-film transistor Nanomaterials 11 3070
[12] [12] Chakraborty W, Ye H C, Grisafe B, Lightcap I and Datta S 2020 Low thermal budget (<250 .C) dual-gate amorphous indium tungsten oxide (IWO) thin-film transistor for monolithic 3D integration IEEE Trans. Electron Devices 67 5336–42
[13] [13] Yamazaki S, Koyama J, Yamamoto Y and Okamoto K 2012 Research, development, and application of crystalline oxide semiconductor SID Symp. Dig. Tech. Papers 43 183–6
[14] [14] KimYS,LeeWB,OhHJ,HongTandParkJS2022 Remarkable stability improvement with a high-performance PEALD-IZO/IGZO top-gate thin-film transistor via modulating dual-channel effects Adv. Mater. Interfaces 9 2200501
[15] [15] Kim C J, Park J, Kim S, Song I, Kim S, Park Y, Lee E, Anass B and Park J S 2009 Characteristics and cleaning of dry-etching-damaged layer of amorphous oxide thin-film transistor Electrochem. Solid-State Lett. 12 H95
[16] [16] Chung Y J, Kim U K, Hwang E S and Hwang C S 2014 Indium tin oxide/InGaZnO bilayer stacks for enhanced mobility and optical stability in amorphous oxide thin film transistors Appl. Phys. Lett. 105 013508
[17] [17] Kim S, Park J, Kim C, Song I, Kim S, Park S, Yin H X, Lee H I, Lee E and Park Y 2009 Source/drain formation of self-aligned top-gate amorphous GaInZnO thin-film transistors by NH3 plasma treatment IEEE Electron Device Lett. 30 374–6
[18] [18] Ko J B, Lee S H, Park K W and Park S H K 2019 Interface tailoring through the supply of optimized oxygen and hydrogen to semiconductors for highly stable top-gate-structured high-mobility oxide thin-film transistors RSC Adv. 9 36293–300
[19] [19] DuAhnB,ShinHS,KimHJ,ParkJSandJeongJK2008 Comparison of the effects of Ar and H2 plasmas on the performance of homojunctioned amorphous indium gallium zinc oxide thin film transistors Appl. Phys. Lett. 93 203506
[20] [20] Um J G and Jang J 2018 Heavily doped N-type a-IGZO by F plasma treatment and its thermal stability up to 600 .C Appl. Phys. Lett. 112 162104
[21] [21] Jeong J K et al 2009 12.1-in. WXGA AMOLED display driven by InGaZnO thin-film transistors J. Soc. Inf. Disp. 17 95–100
[22] [22] NohJY, HanDM,JeongWC,KimJWandChaSY2018 Development of 55” 4K UHD OLED TV employing the internal gate IC with high reliability and short channel IGZO TFTs J. Soc. Inf. Disp. 26 36–41
[23] [23] Han C-W et al 2014 Advanced technologies for UHD curved OLED TV J. Soc. Inf. Disp. 22 552–63
[24] [24] Park C I et al 2018 World’s first large size 77-inch transparent flexible OLED display J. Soc. Inf. Disp. 26 287–95
[25] [25] Chang T K, Lin C W and Chang S 2019 39-3: invited paper: LTPO TFT Technology for AMOLEDs SID Symp. Dig. Tech. Papers 50 545–8
[26] [26] Lee S H 2016 Technology scaling challenges and opportunities of memory devices Proc. 2016 IEEE Int. Electron Devices Meeting (San Francisco, CA: IEEE) (https://doi.org/10.1109/IEDM.2016.7838026)
[27] [27] Li Y and Quader K N 2013 NAND flash memory: challenges and opportunities Computer 46 23–29
[28] [28] Yu B et al 2002 FinFET scaling to 10 nm gate length Digest. Int. Electron Devices Meeting (San Francisco, CA: IEEE) pp 251–4
[29] [29] Verhulst A S, Sorée B, Leonelli D, Vandenberghe W G and Groeseneken G 2010 Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor J. Appl. Phys. 107 024518
[30] [30] Chen Q et al 2022 Investigation of asymmetric characteristics of novel vertical channel-all-around (CAA) In-Ga-Zn-O field effect transistors IEEE Electron Device Lett. 43 894–7
[31] [31] Atsumi T et al 2012 DRAM using crystalline oxide semiconductor for access transistors and not requiring refresh for more than ten days Proc. 2012 4th IEEE Int. Memory Workshop (Milan: IEEE) pp 1–4
[32] [32] Tamura H, Kato K, Ishizu T, Uesugi W, Isobe A, Tsutsui N and Korpinen P 2014 Embedded SRAM and Cortex-M0 core using a 60-nm crystalline oxide semiconductor IEEE Micro 34 42–53
[33] [33] Onuki T et al 2017 Embedded memory and ARM Cortex-M0 core using 60-nm C-axis aligned crystalline indium-gallium-zinc oxide FET integrated with 65-nm Si CMOS IEEE J. Solid-State Circuits 52 925–32
[34] [34] HwangES,KimJS,JeonSM,LeeSJ,JangY, ChoDY and Hwang C S 2018 In2Ga2ZnO7 oxide semiconductor based charge trap device for NAND flash memory Nanotechnology 29 155203
[35] [35] Choi S, Kim B, Jeong J K and Song Y H 2019 A novel structure for improving erase performance of vertical channel NAND flash with an indium-gallium-zinc-oxide channel IEEE Trans. Electron Devices 66 4739–44
[36] [36] Belmonte A et al 2020 Capacitor-less, long-retention (>400s) DRAM cell paving the way towards low-power and high-density monolithic 3D DRAM Proc. 2020 IEEE Int. Electron Devices Meeting (San Francisco, CA: IEEE) (https://doi.org/ 10.1109/IEDM13553.2020.9371900)
[37] [37] Kim M K, Kim I J and Lee J S 2021 CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory Sci. Adv. 7 eabe1341
[38] [38] George S M 2010 Atomic layer deposition: an overview Chem. Rev. 110 111–31
[39] [39] Johnson R W, Hultqvist A and Bent S F 2014 A brief review of atomic layer deposition: from fundamentals to applications Mater. Today 17 236–46
[40] [40] Raaijmakers I J 2011 (Invited) current and future applications of ALD in micro-electronics ECS Trans. 41 3–17
[41] [41] Park J S, Chae H, Chung H K and Lee S I 2011 Thin film encapsulation for flexible AM-OLED: a review Semicond. Sci. Technol. 26 034001
[42] [42] LeeJH,ShengJZ,AnH,HongT, KimHY, LeeH, Seok J H, Park J W, Lim J H and Park J S 2020 Metastable rhombohedral phase transition of semiconducting indium oxide controlled by thermal atomic layer deposition Chem. Mater. 32 7397–403
[43] [43] SiMW, LinZH,ChenZZandYe PD2021 High-performance atomic-layer-deposited indium oxide 3D transistors and integrated circuits for monolithic 3D integration IEEE Trans. Electron Devices 68 6605–9
[44] [44] Si M W, Hu Y Q, Lin Z H, Sun X, Charnas A, Zheng D Q, Lyu X, Wang H Y, Cho K and Ye P D 2021 Why In2O3 can make 0.7 nm atomic layer thin transistors Nano Lett. 21 500–6
[45] [45] Zhang Z C et al 2022 A gate-all-around In2O3 nanoribbon FET with near 20 mA/μm drain current IEEE Electron Device Lett. 43 1905–8
[46] [46] SiMW, LinZH,ChenZZ,SunX,WangHYandYe PD 2022 Scaled indium oxide transistors fabricated using atomic layer deposition Nat. Electron. 5 164–70
[47] [47] HongT, KimK,ChoiSH,LeeSH,HanKL,LimJHand Park J S 2022 Structural, optical, and electrical properties of InOx thin films deposited by plasma-enhanced atomic layer deposition for flexible device applications ACS Appl. Electron. Mater. 4 3010–7
[48] [48] Choi S H, Hong T, Ryu S H and Park J S 2022 Plasma-enhanced atomic-layer-deposited indium oxide thin film using a DMION precursor within a wide process window Ceram. Int. 48 27807–14
[49] [49] XiaoDQ,LuoBB,HuangCM,XiongW, Wu XHand Ding S J 2022 High performance (Vth ~ 0 V, SS ~69 mV/dec, IOn/IOff ~ 1010) thin-film transistors using ultrathin indium oxide channel and SiO2 passivation IEEE Trans. Electron Devices 69 3716–21
[50] [50] Che B W, Zhang H, Yang J, Qi J, Ding X W and Zhang J H 2020 Temperature gradient ZnO deposited via ALD for high-performance transistor applications IEEE J. Electron Devices Soc. 8 885–9
[51] [51] Lee J G and Lee H S 2021 A study on the effect of base-reactant in low-temperature atomic layer deposition of zinc oxide Phys. Status Solidi a 218 2100338
[52] [52] Anders J, Leedy K, Kazimierczuk M and Schuette M 2021 Interface control and electron transport in ALD ZnO/Al2O3 TFTs studied by gated Hall effect Semicond. Sci. Technol. 36 075005
[53] [53] Chen X, Wan J X, Wu H and Liu C 2020 ZnO bilayer thin film transistors using H2O and O3 as oxidants by atomic layer deposition Acta Mater. 185 204–10
[54] [54] Chen X, Wan J X, Gao J, Wu H and Liu C 2022 Enhanced negative bias illumination stability of ZnO thin film transistors by using a two-step oxidation method IEEE Trans. Electron Devices 69 2404–8
[55] [55] Zhao W P, Zhang N, Zhang X Y, Yao C, Zhang J F, Dong S R, Liu Y, Ye Z and Luo J K 2022 Improvement in instability of transparent ALD ZnO TFTs under negative bias illumination stress with SiO/AlO bilayer dielectric IEEE J. Electron Devices Soc. 10 927–32
[56] [56] Castillo-Saenz J R et al 2022 Bias-stress instabilities in low-temperature thin-film transistors made of Al2O3 and ZnO films deposited by PEALD Microelectron. Eng. 259 111788
[57] [57] Yang J, Bahrami A, Ding X W, Lehmann S, Kruse N, He S Y, Wang B W, Hantusch M and Nielsch K 2022 Characteristics of ALD-ZnO thin film transistor using H2O and H2O2 as oxygen sources Adv. Mater. Interfaces 9 2101953
[58] [58] LuJQ,WangWH,LiangJX,LanJ,LinLY, ZhouFC, Chen K, Zhang G B, Shen M and Li Y D 2022 Contact resistance reduction of low temperature atomic layer deposition ZnO thin film transistor using Ar plasma surface treatment IEEE Electron Device Lett. 43 890–3
[59] [59] YangHJ,SeulHJ,KimMJ,KimY, ChoHC,ChoMH, Song Y H, Yang H and Jeong J K 2020 High-performance thin-film transistors with an atomic-layer-deposited indium gallium oxide channel: a cation combinatorial approach ACS Appl. Mater. Interfaces 12 52937–51
[60] [60] HongT, JeongHJ,LeeHM,ChoiSH,LimJHandParkJS 2021 Significance of pairing In/Ga precursor structures on PEALD InGaOx thin-film transistor ACS Appl. Mater. Interfaces 13 28493–502
[61] [61] HurJS,KimMJ,Yoon SH,ChoiH,ParkCK,LeeSH, Cho M H, Kuh B J and Jeong J K 2022 High-performance thin-film transistor with atomic layer deposition (ALD)-derived indium.gallium oxide channel for back-end-of-line compatible transistor applications: cation combinatorial approach ACS Appl. Mater. Interfaces 14 48857–67
[62] [62] Cho M H, Choi C H and Jeong J K 2022 Comparative study of atomic layer deposited indium-based oxide transistors with a Fermi energy level-engineered heterojunction structure channel through a cation combinatorial approach ACS Appl. Mater. Interfaces 14 18646–61
[63] [63] Kim D G, Yoo K S, Kim H M and Park J S 2022 Impact of N2O plasma reactant on PEALD-SiO2 insulator for remarkably reliable ALD-oxide semiconductor TFTs IEEE Trans. Electron Devices 69 3199–205
[64] [64] Lee S, Kim M, Mun G, Ko J, Yeom H I, Lee G H, Shong B and Park S H K 2021 Effects of al precursors on the characteristics of indium-aluminum oxide semiconductor grown by plasma-enhanced atomic layer deposition ACS Appl. Mater. Interfaces 13 40134–44
[65] [65] LeeWB,JeongHJ,KimHMandParkJS2022 Plasma-enhanced atomic layer deposition of aluminum-indium oxide thin films and associated device applications J. Vac. Sci. Technol. A 40 032402
[66] [66] ZhangZC,HuYQ,LinZH,SiMW, CharnasA,ChoK and Ye P D 2022 Atomically thin indium-tin-oxide transistors enabled by atomic layer deposition IEEE Trans. Electron Devices 69 231–6
[67] [67] Tang Q, Chen X, Wan J X, Wu H and Liu C 2020 Influence of Ga doping on electrical performance and stability of ZnO thin-film transistors prepared by atomic layer deposition IEEE Trans. Electron Devices 67 3129–34
[68] [68] Allemang C R, Cho T H, Trejo O, Ravan S, Rodríguez R E, Dasgupta N P and Peterson R L 2020 High-performance zinc tin oxide TFTs with active layers deposited by atomic layer deposition Adv. Electron. Mater. 6 2000195
[69] [69] Kim J S, Jang Y, Kang S, Lee Y, Kim K, Kim W, Lee W and Hwang C S 2020 Substrate-dependent growth behavior of atomic-layer-deposited zinc oxide and zinc tin oxide thin films for thin-film transistor applications J. Phys. Chem. C 124 26780–92
[70] [70] Allemang C R, Cho T H, Dasgupta N P and Peterson R L 2022 Robustness of passivated ALD zinc tin oxide TFTs to aging and bias stress IEEE Trans. Electron Devices 69 6776–82
[71] [71] Jeong S G, Jeong H J, Choi W H, Kim K and Park J S 2020 Hydrogen impacts of PEALD InGaZnO TFTs using SiOx gate insulators deposited by PECVD and PEALD IEEE Trans. Electron Devices 67 4250–5
[72] [72] Ryoo H J, Seong N J, Choi K J and Yoon S M 2021 Implementation of oxide vertical channel TFTs with sub-150 nm channel length using atomic-layer deposited IGZO active and HfO2 gate insulator Nanotechnology 32 255201
[73] [73] BaeSH,RyooHJ,YangJH,KimYH,HwangCSand Yoon S M 2021 Influence of reduction in effective channel length on device operations of In-Ga-Zn-O thin-film transistors with variations in channel compositions IEEE Trans. Electron Devices 68 6159–65
[74] [74] MoonSH,BaeSH,Kwon YH,SeongNJ,YangJH, KimYH, Choi K J, Hwang C S and Yoon S M 2021 Combination of gate-stack process and cationic composition control for boosting the performance of thin-film transistors using In-Ga-Zn-O active channels prepared by atomic layer deposition ACS Appl. Electron. Mater. 3 4849–58
[75] [75] Kim D G, Ryu S H, Jeong H J and Park J S 2021 Facile and stable n+ doping process via simultaneous ultraviolet and thermal energy for coplanar ALD-IGZO thin-film transistors ACS Appl. Electron. Mater. 3 3530–7
[76] [76] Choi W H et al 2021 The significance on structural modulation of buffer and gate insulator for ALD based InGaZnO TFT applications IEEE Trans. Electron Devices 68 6147–53
[77] [77] ChoMH,ChoiCH,SeulHJ,ChoHCandJeongJK2021 Achieving a low-voltage, high-mobility IGZO transistor through an ALD-derived bilayer channel and a hafnia-based gate dielectric stack ACS Appl. Mater. Interfaces 13 16628–40
[78] [78] Choi S N and Yoon S M 2021 Implementation of In–Ga–Zn–O thin-film transistors with vertical channel structures designed with atomic-layer deposition and silicon spacer steps Electron. Mater. Lett. 17 485–92
[79] [79] Ahn H M, Kwon Y H, Seong N J, Choi K J, Hwang C S and Yoon S M 2022 Impact of strategic approaches for improving the device performance of mesa-shaped nanoscale vertical-channel thin-film transistors using atomic-layer deposited In–Ga–Zn–O channel layers Electron. Mater. Lett. 18 294–303
[80] [80] Jeong H J, Kim Y S, Jeong S G and Park J S 2022 Impact of annealing temperature on atomic layer deposited In.Ga.Zn.O thin-film transistors ACS Appl. Electron. Mater. 4 1343–50
[81] [81] Büschges M I, Hoffmann R C, Regoutz A, Schlueter C and Schneider J J 2021 Atomic layer deposition of ternary indium/tin/aluminum oxide thin films, their characterization and transistor performance under illumination Chem. Eur. J. 27 9791–800
[82] [82] Büschges M I, Trouillet V and Schneider J J 2022 Electronic influence of ultrathin aluminum oxide on the transistor device performance of binary indium/tin oxide films J. Mater. Chem. C 10 5447–57
[83] [83] LeeDH,KimDG,KimM,UhmS,KimT, KuhB and Park J S 2022 Developing subthreshold-swing limit of PEALD In–Sn–Ga–O transistor via atomic-scaled Sn control ACS Appl. Electron. Mater. 4 5608–16
[84] [84] MoonSH,BaeSH,Kwon YH,SeongNJ,ChoiKJand Yoon S M 2022 Combination of InZnO/InGaZnO Bi-layered channels prepared by atomic layer deposition and ozone-based gate-stack formation for guaranteeing high field-effect mobility and long-term stability of thin film transistors Ceram. Int. 48 20905–13
[85] [85] Lee K H, Ok K C, Kim H and Park J S 2014 The influence of oxygen partial pressure on the performance and stability of Ge-doped InGaO thin film transistors Ceram. Int. 40 3215–20
[86] [86] Sheng J Z, Hong T, Lee H M, Kim K, Sasase M, Kim J, Hosono H and Park J S 2019 Amorphous IGZO TFT with high mobility of ~70 cm2/(V s) via vertical dimension control using PEALD ACS Appl. Mater. Interfaces 11 40300–9
[87] [87] AhnCH,KimSH,Yun MGandChoHK2014Designof step composition gradient thin film transistor channel layers grown by atomic layer deposition Appl. Phys. Lett. 105 223513
[88] [88] Nomura K, Kamiya T, Ohta H, Ueda K, Hirano M and Hosono H 2004 Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films Appl. Phys. Lett. 85 1993–5
[89] [89] Sheng J Z, Hong T, Kang D, Yi Y, Lim J H and Park J S 2019 Design of InZnSnO semiconductor alloys synthesized by supercycle atomic layer deposition and their rollable applications ACS Appl. Mater. Interfaces 11 12683–92
[90] [90] BaekIH,PyeonJJ,HanSH,LeeGY, ChoiBJ,Han JH, Chung T M, Hwang C S and Kim S K 2019 High-performance thin-film transistors of quaternary indium-zinc-tin oxide films grown by atomic layer deposition ACS Appl. Mater. Interfaces 11 14892–901
[91] [91] LeeJM,LeeHJ,PiJE,YangJH,LeeJH,AhnSD, Kang S Y and Moon J 2019 All-oxide thin-film transistors with channels of mixed InOx-ZnOy formed by plasma-enhanced atomic layer deposition process J. Vac. Sci. Technol. A 37 060910
[92] [92] Illiberi A, Scherpenborg R, Wu Y, Roozeboom F and Poodt P 2013 Spatial atmospheric atomic layer deposition of AlxZn1–xO ACS Appl. Mater. Interfaces 5 13124–8
[93] [93] HsuCH et al 2021 High doping efficiency Al-doped ZnO films prepared by co-injection spatial atomic layer deposition J. Alloys Compd. 884 161025
[94] [94] Illiberi A, Cobb B, Sharma A, Grehl T, Brongersma H, Roozeboom F, Gelinck G and Poodt P 2015 Spatial atmospheric atomic layer deposition of InxGayZnzO for thin film transistors ACS Appl. Mater. Interfaces 7 3671–5
[95] [95] Illiberi A et al 2018 Atmospheric plasma-enhanced spatial-ALD of InZnO for high mobility thin film transistors J. Vac. Sci. Technol. A 36 04F401
[96] [96] ChungYJ,ChoiWJ,KangSG,LeeCW, LeeJO, Kong K J and Lee Y K 2014 A study on the influence of local doping in atomic layer deposited Al: ZnO thin film transistors J. Mater. Chem. C 2 9274–82
[97] [97] Zhao B, Tang L D, Wang B, Jia Y and Feng J H 2017 Photoelectric and passivation properties of atomic layer deposited gradient AZO thin film Superlattices Microstruct. 102 314–22
[98] [98] Kamiya T, Nomura K and Hosono H 2009 Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping J. Disp. Technol. 5 468–83
[99] [99] Kamiya T, Nomura K and Hosono H 2010 Present status of amorphous In-Ga-Zn-O thin-film transistors Sci. Technol. Adv. Mater. 11 044305
[100] [100] KimWG,TakYJ,duAhnB,JungTS,ChungKBand Kim H J 2016 High-pressure gas activation for amorphous indium-gallium-zinc-oxide thin-film transistors at 100 .C Sci. Rep. 6 23039
[101] [101] Jeong H J, Lee W B, Sheng J Z, Lim J H and Park J S 2022 Plasma-enhanced atomic-layer deposition of active layers of nanolaminated (InOx)n(GaZnOy)m for thin-film transistors J. Mater. Chem. C 20 7831–8
[102] [102] Ahn C H, Senthil K, Cho H K and Lee S Y 2013 Artificial semiconductor/insulator superlattice channel structure for high-performance oxide thin-film transistors Sci. Rep. 3 2737
[103] [103] Kim J et al 2020 Complementary hybrid semiconducting superlattices with multiple channels and mutual stabilization Nano Lett. 20 4864–71
[104] [104] Cho H, Song D, Kim Y, Kim B and Char K 2022 High-mobility field-effect transistor using 2-dimensional electron gas at the LaScO3/BaSnO3 interface ACS Appl. Electron. Mater. 4 356–66
[105] [105] Sharbati S, Gharibshahian I, Ebel T, Orouji A A and Franke W T 2021 Analytical model for two-dimensional electron gas charge density in recessed-gate GaN high-electron-mobility transistors J. Electron. Mater. 50 3923–9
[106] [106] SeulHJ,KimMJ,YangHJ,ChoMH,ChoMH, Song W B and Jeong J K 2020 Atomic layer deposition process-enabled carrier mobility boosting in field-effect transistors through a nanoscale ZnO/IGO heterojunction ACS Appl. Mater. Interfaces 12 33887–98
[107] [107] ShiJL,ZhangJY, YangL,QuM,QiDCandZhangKHL 2021 Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices Adv. Mater. 33 2006230
[108] [108] Kim J, Bang J, Nakamura N and Hosono H 2019 Ultra-wide bandgap amorphous oxide semiconductors for NBIS-free thin-film transistors APL Mater. 7 022501
[109] [109] Bae S H, Moon S H, Kwon Y H, Seong N-J, Choi K J and Yoon S M 2022 Synergic strategies of composition-modified bilayer channel configuration and ozone-processed gate stacks for atomic-layer deposited In-Ga-Zn-O thin-film transistors J. Alloys Compd. 906 164283
[110] [110] Asikainen T, Ritala M and Leskel. M 1994 Growth of In2O3 thin films by atomic layer epitaxy J. Electrochem. Soc. 141 3210–3
[111] [111] Lee D J, Kwon J Y, Lee J I and Kim K B 2011 Self-limiting film growth of transparent conducting In2O3 by atomic layer deposition using trimethylindium and water vapor J. Phys. Chem. C 115 15384–9
[112] [112] Mane A U, Allen A J, Kanjolia R K and Elam J W 2016 Indium oxide thin films by atomic layer deposition using trimethylindium and ozone J. Phys. Chem. C 120 9874–83
[113] [113] Maeng W J, Choi D W, Park J and Park J S 2015 Indium oxide thin film prepared by low temperature atomic layer deposition using liquid precursors and ozone oxidant J. Alloys Compd. 649 216–21
[114] [114] Libera J A, Hryn J N and Elam J W 2011 Indium oxide atomic layer deposition facilitated by the synergy between oxygen and water Chem. Mater. 23 2150–8
[115] [115] Ma Q, Zheng H M, Shao Y, Zhu B, Liu W J, Ding S J and Zhang D W 2018 Atomic-layer-deposition of indium oxide nano-films for thin-film transistors Nanoscale Res. Lett. 13 4
[116] [116] Elam J W, Martinson A B F, Pellin M J and Hupp J T 2006 Atomic layer deposition of In2O3 using cyclopentadienyl indium: a new synthetic route to transparent conducting oxide films Chem. Mater. 18 3571–8
[117] [117] Kobayashi R, Nabatame T, Kurishima K, Onaya T, Ohi A, Ikeda N, Nagata T, Tsukagoshi K and Ogura A 2019 Characteristics of oxide TFT using carbon-doped In2O3 thin film fabricated by low-temperature ALD using ethylcyclopentadienyl indium (In-EtCp) and H2O & O3 ECS Trans. 92 3–13
[118] [118] Ramachandran R K, Dendooven J, Poelman H and Detavernier C 2015 Low temperature atomic layer deposition of crystalline In2O3 films J. Phys. Chem. C 119 11786–91
[119] [119] Nilsen O, Balasundaraprabhu R, Monakhov E V, Muthukumarasamy N, Fjellv.g H and Svensson B G 2009 Thin films of In2O3 by atomic layer deposition using In(acac)3 Thin Solid Films 517 6320–2
[120] [120] Agbenyeke R E, Jung E A, Park B K, Chung T M, Kim C G and Han J H 2017 Thermal atomic layer deposition of In2O3 thin films using dimethyl (N-ethoxy-2, 2-dimethylcarboxylicpropanamide)indium and H2O Appl. Surf. Sci. 419 758–63
[121] [121] Maeng W J, Choi D W, Chung K B, Koh W, Kim G Y, Choi S Y and Park J S 2014 Highly conducting, transparent, and flexible indium oxide thin film prepared by atomic layer deposition using a new liquid precursor Et2InN(SiMe3)2 ACS Appl. Mater. Interfaces 6 17481–8
[122] [122] Sheng J Z, Lee H J, Oh S and Park J S 2016 Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition ACS Appl. Mater. Interfaces 8 33821–8
[123] [123] Yeom HI,Ko JB,MunGandParkSHK2016High mobility polycrystalline indium oxide thin-film transistors by means of plasma-enhanced atomic layer deposition J. Mater. Chem. C 4 6873–80
[124] [124] Maeng W J, Choi D W, Park J and Park J S 2015 Atomic layer deposition of highly conductive indium oxide using a liquid precursor and water oxidant Ceram. Int. 41 10782–7
[125] [125] ChoiSH,JeongHJ,HongT, NaYH,ParkCK,LimMY, Jeong S H, Lim J H and Park J S 2021 Plasma-enhanced atomic layer deposited indium oxide film using a novel dimethylbutylamino-trimethylindium precursor for thin film transistors J. Vac. Sci. Technol. A 39 032406
[126] [126] Hwang C S 2014 Atomic Layer Deposition for Semiconductors (New York: Springer) pp 15–46
[127] [127] Kanjolia R K, Anthis J, Odedra R, Williams P and Heys P N 2008 Design and development of ALD precursors for microelectronics ECS Trans. 16 79–86
[128] [128] Lee J H, Yoo M, Kang D, Lee H M, Choi W H, Park J W, Yi Y, Kim H Y and Park J S 2018 Selective SnOx atomic layer deposition driven by oxygen reactants ACS Appl. Mater. Interfaces 10 33335–42
[129] [129] Sheng J Z, Park E J, Shong B and Park J S 2017 Atomic layer deposition of an indium gallium oxide thin film for thin-film transistor applications ACS Appl. Mater. Interfaces 9 23934–40
[130] [130] ChenX,Wan JX,JiLW, GaoJ,Wu HandLiuC2022 Influence of precursor purge time on the performance of ZnO TFTs fabricated by atomic layer deposition Vacuum 200 111022
[131] [131] Janotti A and van de Walle C G 2005 Oxygen vacancies in ZnO Appl. Phys. Lett. 87 122102
[132] [132] Nahm H H, Kim Y S and Kim D H 2012 Instability of amorphous oxide semiconductors via carrier-mediated structural transition between disorder and peroxide state Phys. Status Solidi b 249 1277–81
[133] [133] Han W H, Oh Y J, Chang K J and Park J S 2015 Electronic structure of oxygen interstitial defects in amorphous In-Ga-Zn-O semiconductors and implications for device behavior Phys. Rev. Appl. 3 044008
[134] [134] KangY, AhnBD,SongJH,MoYG,NahmHH,HanSand Jeong J K 2015 Hydrogen bistability as the origin of photo-bias-thermal instabilities in amorphous oxide semiconductors Adv. Electron. Mater. 1 1400006
[135] [135] Janotti A and van de Walle C G 2007 Native point defects in ZnO Phys. Rev. B 76 165202
[136] [136] OnN,KangY, SongA,AhnBD,KimHD,LimJH, Chung K B, Han S and Jeong J K 2017 Origin of electrical instabilities in self-aligned amorphous In-Ga-Zn-O thin-film transistors IEEE Trans. Electron Devices 64 4965–73
[137] [137] Toda T, Wang D P, Jiang J X, Hung M P and Furuta M 2014 Quantitative analysis of the effect of hydrogen diffusion from silicon oxide etch-stopper layer into amorphous In-Ga-Zn-O on thin-film transistor IEEE Trans. Electron Devices 61 3762–7
[138] [138] KimHW, KimES,ParkJS,LimJHandKimBS2018 Influence of effective channel length in self-aligned coplanar amorphous-indium-gallium-zinc-oxide thin-film transistors with different annealing temperatures Appl. Phys. Lett. 113 022104
[139] [139] ChoSI,Ko JB,LeeSH,KimJandParkSHK2022 Remarkably stable high mobility self-aligned oxide TFT by investigating the effect of oxygen plasma time during PEALD of SiO2 gate insulator J. Alloys Compd. 893 162308
[140] [140] Bang J, Matsuishi S and Hosono H 2017 Hydrogen anion and subgap states in amorphous In-Ga-Zn-O thin films for TFT applications Appl. Phys. Lett. 110 232105
[141] [141] Nahm H H, Park C H and Kim Y S 2014 Bistability of hydrogen in ZnO: origin of doping limit and persistent photoconductivity Sci. Rep. 4 4124
[142] [142] Lee Y et al 2021 Hydrogen barriers based on chemical trapping using chemically modulated Al2O3 grown by atomic layer deposition for InGaZnO thin-film transistors ACS Appl. Mater. Interfaces 13 20349–60
[143] [143] Schaller R R 1997 Moore’s law: past, present and future IEEE Spectr. 34 52–59
[144] [144] Jeong S G, Jeong H J and Park J S 2021 Low subthreshold swing and high performance of ultrathin PEALD InGaZnO thin-film transistors IEEE Trans. Electron Devices 68 1670–5
[145] [145] WangZH,LinZH,SiMWandYe PD2022 Characterization of interface and bulk traps in ultrathin atomic layer-deposited oxide semiconductor MOS capacitors with HfO2/In2O3 gate stack by C-V and conductance method Front. Mater. 9 850451
[146] [146] Charnas A, Si M W, Lin Z H and Ye P D 2022 Improved stability with atomic-layer-deposited encapsulation on atomic-layer In2O3 transistors by reliability characterization IEEE Trans. Electron Devices 69 5549–55
[147] [147] ChoiJW, ParkSH,Yu CG,ChoWJandParkJT2019 Effects of electrode materials on the device performances and instabilities in amorphous InGaZnO thin film transistors Microelectron. Reliab. 100–1 113416
[148] [148] Tappertzhofen S 2022 Impact of electrode materials on the performance of amorphous IGZO thin-film transistors MRS Adv. 7 723–8
[149] [149] Hsu P C, Chen W C, Tsai Y T, Kung Y C, Chang C H, Hsu C J, Wu C C and Hsieh H H 2013 Fabrication of p-type SnO thin-film transistors by sputtering with practical metal electrodes Jpn. J. Appl. Phys. 52 05DC07
[150] [150] Leung G, Lai L Z, Gupta P and Chui C O 2012 Device-and circuit-level variability caused by line edge roughness for sub-32-nm FinFET technologies IEEE Trans. Electron Devices 59 2057–63
[151] [151] LeeKH,LeeSH,ChoSJ,HwangCSandParkSHK2022 Improving the electrical performance of vertical thin-film transistor by engineering its back-channel interface Microelectron. Eng. 253 111676
[152] [152] Kwon J D, Kwon S H, Jung T H, Nam K S, Chung K B, Kim D H and Park J S 2013 Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature Appl. Surf. Sci. 285 373–9
[153] [153] Wang Z W, Nayak P K, Caraveo-Frescas J A and Alshareef H N 2016 Recent developments in p-type oxide semiconductor materials and devices Adv. Mater. 28 3831–92
[154] [154] Jang Y H, Choi S C, Kim B, Bae J U and Park K S 2015 (Invited) integrated gate driver circuits using a-Si TFT and oxide TFT ECS Trans. 67 61–72
[155] [155] Nomura K 2021 Recent progress of oxide-TFT-based inverter technology J. Inf. Disp. 22 211–29
[156] [156] Radamson H H et al 2019 Miniaturization of CMOS Micromachines 10 293
[157] [157] Shang Z W, Hsu H H, Zheng Z W and Cheng C H 2019 Progress and challenges in p-type oxide-based thin film transistors Nanotechnol. Rev. 8 422–43
[158] [158] Maeng W, Lee S H, Kwon J D, Park J and Park J S 2016 Atomic layer deposited p-type copper oxide thin films and the associated thin film transistor properties Ceram. Int. 42 5517–22
[159] [159] Napari M et al 2021 Role of ALD Al2O3 surface passivation on the performance of p-type Cu2O thin film transistors ACS Appl. Mater. Interfaces 13 4156–64
[160] [160] KimHM,ChoiSH,JeongHJ,LeeJH,KimJandParkJS 2021 Highly dense and stable p-type thin-film transistor based on atomic layer deposition SnO fabricated by two-step crystallization ACS Appl. Mater. Interfaces 13 30818–25
[161] [161] Kim S H, Baek I H, Kim D H, Pyeon J J, Chung T M, BaekS H,Kim J S, HanJH andKimS K 2017 Fabrication of high-performance p-type thin film transistors using atomic-layer-deposited SnO films J. Mater. Chem. C 5 3139–45
[162] [162] JangY, Yeu IW, KimJS,HanJH,ChoiJHandHwangCS 2019 Reduction of the hysteresis voltage in atomic-layer-deposited p-type SnO thin-film transistors by adopting an Al2O3 interfacial layer Adv. Electron. Mater. 5 1900371
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: review and outlook[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 12006
Category: Topical Review
Received: Oct. 10, 2022
Accepted: --
Published Online: Jul. 26, 2024
The Author Email: (jsparklime@hanyang.ac.kr)