Laser & Optoelectronics Progress, Volume. 61, Issue 2, 0211021(2024)

Review of Optical Microvision-Based Precision Positioning Measurement (Invited)

Chenyang Zhao*, Jie Xiang, Kai Bian, Zijian Zhu, and Qinghong Wan
Author Affiliations
  • School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518057, Guangdong , China
  • show less
    References(123)

    [1] Gao W, Kim S W, Bosse H et al. Measurement technologies for precision positioning[J]. CIRP Annals, 64, 773-796(2015).

    [2] He S F, Tang H, Zhang K F et al. A flip-chip alignment system with the property of deviation self-correction at the nanoscale[J]. IEEE Transactions on Industrial Electronics, 68, 2345-2355(2021).

    [3] Zimmermann S, Tiemerding T, Fatikow S. Automated robotic manipulation of individual colloidal particles using vision-based control[J]. IEEE/ASME Transactions on Mechatronics, 20, 2031-2038(2015).

    [4] Marturi N, Tamadazte B, Dembélé S et al. Image-guided nanopositioning scheme for SEM[J]. IEEE Transactions on Automation Science and Engineering, 15, 45-56(2018).

    [5] Pang C K, Wu D, Shi H T et al. Photon-counting laser interferometer for absolute distance measurement on rough surface[J]. Review of Scientific Instruments, 90, 083101(2019).

    [6] Shishova M V, Odinokov S B, Lushnikov D S et al. Mathematical modeling of signal transfer process into optical system of a linear displacement encoder[J]. Procedia Engineering, 201, 623-629(2017).

    [7] Zhou C, Gong Z, Chen B K et al. A closed-loop controlled nanomanipulation system for probing nanostructures inside scanning electron microscopes[J]. IEEE/ASME Transactions on Mechatronics, 21, 1233-1241(2016).

    [8] Ding H Y, Shi C Y, Ma L et al. Visual servoing-based nanorobotic system for automated electrical characterization of nanotubes inside SEM[J]. Sensors, 18, 1137(2018).

    [9] Cheng P, Menq C H. Visual tracking of six-axis motion rendering ultraprecise visual servoing of microscopic objects[J]. IEEE/ASME Transactions on Mechatronics, 23, 1564-1572(2018).

    [10] Wang R Z, Zhang X M. Optimal design of a planar parallel 3-DOF nanopositioner with multi-objective[J]. Mechanism and Machine Theory, 112, 61-83(2017).

    [11] Yang M, Wang Y, Liu Z H et al. A monocular vision-based decoupling measurement method for plane motion orbits[J]. Measurement, 187, 110312(2022).

    [12] Yao S, Li H, Pang S Q et al. A review of computer microvision-based precision motion measurement: principles, characteristics, and applications[J]. IEEE Transactions on Instrumentation and Measurement, 70, 5007928(2021).

    [13] Voelkel R, Vogler U, Bich A et al. Advanced mask aligner lithography: new illumination system[J]. Optics Express, 18, 20968-20978(2010).

    [14] Lereu A L, Passian A, Dumas P. Near field optical microscopy: a brief review[J]. International Journal of Nanotechnology, 9, 488(2012).

    [15] Shi W C, Zheng J M, Li Y et al. Measurement and modeling of bidirectional reflectance distribution function (BRDF) on cutting surface based on the coaxial optical microscopic imaging[J]. Optik, 170, 278-286(2018).

    [16] Mehta N, Mahigir A, Veronis G et al. Hyperspectral dark field optical microscopy for orientational imaging of a single plasmonic nanocube using a physics-based learning method[J]. Nanoscale Advances, 4, 4094-4101(2022).

    [17] Young G, Kukura P. Interferometric scattering microscopy[J]. Annual Review of Physical Chemistry, 70, 301-322(2019).

    [18] Chai H T, Cao P, Yang Y Y et al. Numerical simulation research and applications on scattering imaging of surface defects on optical components[J]. Proceedings of SPIE, 10023, 100230L(2016).

    [19] Zhang Y H, Yang Y Y, Li C et al. Defects evaluation system for spherical optical surfaces based on microscopic scattering dark-field imaging method[J]. Applied Optics, 55, 6162-6171(2016).

    [20] Mehta S B, Oldenbourg R. Image simulation for biological microscopy: microlith[J]. Biomedical Optics Express, 5, 1822-1838(2014).

    [21] Zhu Z J, Fang X M, Zhao C Y. Influence of light intensity and magnification on the precision of nanoscale positioning in micro-vision-based dark-field imaging[J]. Optics and Lasers in Engineering, 169, 107753(2023).

    [22] Svoboda D, Kozubek M, Stejskal S. Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry[J]. Cytometry Part A, 75A, 494-509(2009).

    [24] Sage D, Donati L, Soulez F et al. DeconvolutionLab2: an open-source software for deconvolution microscopy[J]. Methods, 115, 28-41(2017).

    [25] Griffa A, Garin N, Platform B A O et al. Comparison of Deconvolution Software in 3D microscopy: a user point of view: part 1[J]. GIT Imaging & Microscopy, 12, 43-45(2010).

    [26] Sage D, Neumann F R, Hediger F et al. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics[J]. IEEE Transactions on Image Processing, 14, 1372-1383(2005).

    [27] Aguet F, van de Ville D, Unser M. Model-based 2.5-D deconvolution for extended depth of field in brightfield microscopy[J]. IEEE Transactions on Image Processing, 17, 1144-1153(2008).

    [28] Martins H A, Birk J R, Kelley R B. Camera models based on data from two calibration planes[J]. Computer Graphics and Image Processing, 17, 173-180(1981).

    [29] Zhou Y, Nelson B J. Calibration of a parametric model of an optical microscope[J]. Optical Engineering, 38, 1989-1995(1999).

    [30] Li H, Zhang X M, Wu H et al. Line-based calibration of a micro-vision motion measurement system[J]. Optics and Lasers in Engineering, 93, 40-46(2017).

    [31] Li H, Zhang X M, Zhu B L. Single grid image based calibration of an optical microscope[C](2017).

    [32] Ammi M, Fremont V, Ferreira A. Automatic camera-based microscope calibration for a telemicromanipulation system using a virtual pattern[J]. IEEE Transactions on Robotics, 25, 184-191(2009).

    [33] Chen Z, Liao H Y, Zhang X M. Telecentric stereo micro-vision system: calibration method and experiments[J]. Optics and Lasers in Engineering, 57, 82-92(2014).

    [34] Lu Q H, Zhang X M, Fan Y B. Robust multiscale method for in-plane micro-motion measurement based on computer micro-vision[J]. Chinese Journal of Mechanical Engineering, 45, 164-169, 177(2009).

    [35] Clark L, Shirinzadeh B, Bhagat U et al. A vision-based measurement algorithm for micro/nano manipulation[C], 100-105(2013).

    [36] Sandoz P, Ravassard J C, Dembele S et al. Phase-sensitive vision technique for high accuracy position measurement of moving targets[J]. IEEE Transactions on Instrumentation and Measurement, 49, 867-872(2000).

    [37] Saveljev V, Son J Y, Lee H et al. Non-contact measurement of vibrations using deferred moiré patterns[J]. Advances in Mechanical Engineering, 15, 168781322211438(2023).

    [38] Jin J, Zhao L N, Xu S L. High-precision rotation angle measurement method based on monocular vision[J]. Journal of the Optical Society of America A, 31, 1401-1407(2014).

    [39] Sandoz P, Bonnans V, Gharbi T. High-accuracy position and orientation measurement of extended two-dimensional surfaces by a phase-sensitive vision method[J]. Applied Optics, 41, 5503-5511(2002).

    [40] Ri S, Fujigaki M, Morimoto Y. Sampling Moiré method for accurate small deformation distribution measurement[J]. Experimental Mechanics, 50, 501-508(2010).

    [41] Ibaraki S, Tanizawa Y. Vision-based measurement of two-dimensional positioning errors of machine tools[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 5, 315-328(2011).

    [42] Chen W H, Li B R, Zhao T et al. Vision measurement system for position-dependent geometric error calibration of five-axis machine tools[J]. The International Journal of Advanced Manufacturing Technology, 123, 3969-3981(2022).

    [43] Li W M, Jin J, Li X F et al. Method of rotation angle measurement in machine vision based on calibration pattern with spot array[J]. Applied Optics, 49, 1001-1006(2010).

    [44] Li L C, Yu Q F, Lei Z H et al. High-accuracy measurement of rotation angle based on image[J]. Acta Optica Sinica, 25, 491-496(2005).

    [45] Morimoto Y, Fujigaki M, Masaya A et al. Accurate displacement measurement for landslide prediction by sampling moiré method[J]. Advanced Materials Research, 79/80/81/82, 1731-1734(2009).

    [46] Ri S, Hayashi S, Ogihara S et al. Accurate full-field optical displacement measurement technique using a digital camera and repeated patterns[J]. Optics Express, 22, 9693-9706(2014).

    [47] Sugiura H, Sakuma S, Kaneko M et al. On-chip measurement of cellular mechanical properties using moiré fringe[C], 3513-3518(2015).

    [48] Wang Q H, Ri S E. Sampling Moiré method for full-field deformation measurement: a brief review[J]. Theoretical and Applied Mechanics Letters, 12, 100327(2022).

    [49] Irino N, Shimoike M, Mori K et al. A vision-based machine accuracy measurement method[J]. CIRP Annals, 69, 445-448(2020).

    [50] Yamahata C, Sarajlic E, Stranczl M et al. Subpixel translation of MEMS measured by discrete Fourier transform analysis of CCD images[C], 1697-1700(2011).

    [51] Su J D, Qi X H, Duan X S. Plane pose measurement method based on monocular vision and checkerboard target[J]. Acta Optica Sinica, 37, 0815002(2017).

    [52] Lu Q, Zhou H B, Li Z Q et al. Calibration of five-axis motion platform based on monocular vision[J]. The International Journal of Advanced Manufacturing Technology, 118, 3487-3496(2022).

    [53] Yin S, Zhou H B, Ju X et al. Vision-based measurement for decoupling identification of geometric errors of rotating axes for five-axis platform[J]. Measurement Science and Technology, 33, 045007(2022).

    [54] Yang J C, Man J B, Xi M et al. Precise measurement of position and attitude based on convolutional neural network and visual correspondence relationship[J]. IEEE Transactions on Neural Networks and Learning Systems, 31, 2030-2041(2020).

    [55] Gao F, Linghu Q J, Ge Y S et al. Location method of laser QR code based on position discrimination[J]. Journal of Computer-Aided Design & Computer Graphics, 29, 1060-1067(2017).

    [56] Li X, Liu W, Pan Y et al. A knowledge-driven approach for 3D high temporal-spatial measurement of an arbitrary contouring error of CNC machine tools using monocular vision[J]. Sensors, 19, 744(2019).

    [57] Wang H, Wang J, Chen B et al. Absolute optical imaging position encoder[J]. Measurement, 67, 42-50(2015).

    [58] André A N, Sandoz P, Mauzé B et al. Robust phase-based decoding for absolute (X, Y, Θ) positioning by vision[J]. IEEE Transactions on Instrumentation and Measurement, 70, 5001612(2021).

    [59] Guelpa V, Sandoz P, Vergara M A et al. 2D visual micro-position measurement based on intertwined twin-scale patterns[J]. Sensors and Actuators A: Physical, 248, 272-280(2016).

    [60] Masa P, Franzi E, Urban C. Nanometric resolution absolute position encoders[C], 1-3(2009).

    [61] Kim J A, Kim J W, Kang C S et al. Absolute angle measurement using a phase-encoded binary graduated disk[J]. Measurement, 80, 288-293(2016).

    [62] André A N, Sandoz P, Mauzé B et al. Sensing one nanometer over ten centimeters: a microencoded target for visual in-plane position measurement[J]. IEEE/ASME Transactions on Mechatronics, 25, 1193-1201(2020).

    [63] André A N, Sandoz P, Jacquot M et al. Pose measurement at small scale by spectral analysis of periodic patterns[J]. International Journal of Computer Vision, 130, 1566-1582(2022).

    [64] Kim J A, Lee J Y, Kang C S et al. Measurement of six-degree-of-freedom absolute postures using a phase-encoded pattern target and a monocular vision system[J]. International Journal of Precision Engineering and Manufacturing, 24, 1191-1203(2023).

    [65] Li X, Liu W, Pan Y et al. Monocular-vision-based contouring error detection and compensation for CNC machine tools[J]. Precision Engineering, 55, 447-463(2019).

    [66] Li X, Liu W, Pan Y et al. Binocular vision-based 3D method for detecting high dynamic and wide-range contouring errors of CNC machine tools[J]. Measurement Science and Technology, 30, 125019(2019).

    [67] Zhao H N, Niu R R, Fan M Y et al. 2D absolute position measurement based on the hybrid encoding method[J]. Review of Scientific Instruments, 94, 025101(2023).

    [68] Zea J A G, Sandoz P, Robert L. Position encryption of extended surfaces for subpixel localization of small-sized fields of observation[C], 22-27(2009).

    [69] Tan N, Clevy C, Laurent G J et al. Characterization and compensation of XY micropositioning robots using vision and pseudo-periodic encoded patterns[C], 2819-2824(2014).

    [70] Zhou P, Goodson K E. Subpixel displacement and deformation gradient measurement using digital image/speckle correlation[J]. Optical Engineering, 40, 1613-1620(2001).

    [71] Zhang X, Zhang X M, Wu H et al. A robust rotation-invariance displacement measurement method for a micro-/ nano-positioning system[J]. Measurement Science and Technology, 29, 055402(2018).

    [72] Li H, Zhu B L, Chen Z et al. Realtime in-plane displacements tracking of the precision positioning stage based on computer micro-vision[J]. Mechanical Systems and Signal Processing, 124, 111-123(2019).

    [73] Cheng P, Menq C H. Ultraprecise three-axis visual motion tracking of microscopic objects[J]. IEEE Transactions on Instrumentation and Measurement, 66, 2597-2605(2017).

    [74] Zhao C Y, Cheung C, Liu M Y. Integrated polar microstructure and template-matching method for optical position measurement[J]. Optics Express, 26, 4330-4345(2018).

    [75] Zhao C Y, Cheung C F, Xu P. High-efficiency sub-microscale uncertainty measurement method using pattern recognition[J]. ISA Transactions, 101, 503-514(2020).

    [76] Zhao C Y, Li Y, Yao Y X et al. Random residual neural network-based nanoscale positioning measurement[J]. Optics Express, 28, 13125-13130(2020).

    [77] Zhao C Y, Cheung C F, Xu P. Optical nanoscale positioning measurement with a feature-based method[J]. Optics and Lasers in Engineering, 134, 106225(2020).

    [78] Dong Y L, Pan B. A review of speckle pattern fabrication and assessment for digital image correlation[J]. Experimental Mechanics, 57, 1161-1181(2017).

    [79] Gauvin C, Jullien D, Doumalin P et al. Image correlation to evaluate the influence of hygrothermal loading on wood[J]. Strain, 50, 428-435(2014).

    [80] Chen B, Pan B. Camera calibration using synthetic random speckle pattern and digital image correlation[J]. Optics and Lasers in Engineering, 126, 105919(2020).

    [81] Souto Janeiro A, Fernández López A, Chimeno Manguan M et al. Three-dimensional digital image correlation based on speckle pattern projection for non-invasive vibrational analysis[J]. Sensors, 22, 9766(2022).

    [82] Yamaguchi I. A laser-speckle strain gauge[J]. Journal of Physics E: Scientific Instruments, 14, 1270-1273(1981).

    [83] Peters W H, Ranson W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 21, 427-431(1982).

    [84] Bruck H A, McNeill S R, Sutton M A et al. Digital image correlation using Newton-Raphson method of partial differential correction[J]. Experimental Mechanics, 29, 261-267(1989).

    [85] Atkinson D, Becker T. A 117 line 2D digital image correlation code written in MATLAB[J]. Remote Sensing, 12, 2906(2020).

    [86] Zhao C Y, Cheung C, Liu M Y. Modeling and simulation of a machining process chain for the precision manufacture of polar microstructure[J]. Micromachines, 8, 345(2017).

    [87] Zhao C Y, Cheung C F, Liu M Y. Nanoscale measurement with pattern recognition of an ultra-precision diamond machined polar microstructure[J]. Precision Engineering, 56, 156-163(2019).

    [88] Zheng L, Yang Y, Tian Q. SIFT meets CNN: a decade survey of instance retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 1224-1244(2018).

    [89] Bay H, Ess A, Tuytelaars T et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 110, 346-359(2008).

    [90] Rublee E, Rabaud V, Konolige K et al. ORB: an efficient alternative to SIFT or SURF[C], 2564-2571(2012).

    [91] Gao X B, Wang Q, Li X L et al. Zernike-moment-based image super resolution[J]. IEEE Transactions on Image Processing, 20, 2738-2747(2011).

    [92] Zhao C Y, Xiang J, Cheung C F. Sub-microscale precision repeatability position measurement using integrated polar microstructure and feature extraction method[J]. Measurement, 218, 113254(2023).

    [93] Li H L, Fang X M, Zhu Z J et al. The approach of nanoscale vision-based measurement via diamond-machined surface topography[J]. Measurement, 214, 112814(2023).

    [94] Kudryavtsev A V, Dembélé S, Piat N. Full 3D rotation estimation in scanning electron microscope[C], 1134-1139(2017).

    [95] Chowdhury S, Thakur A, Švec P et al. Automated manipulation of biological cells using gripper formations controlled by optical tweezers[J]. IEEE Transactions on Automation Science and Engineering, 11, 338-347(2014).

    [96] Liu X Y, Lu Z, Sun Y. Orientation control of biological cells under inverted microscopy[J]. IEEE/ASME Transactions on Mechatronics, 16, 918-924(2011).

    [97] Wong C Y, Mills J K. Cleavage-stage embryo rotation tracking and automated micropipette control: towards automated single cell manipulation[C], 2351-2356(2016).

    [98] Tien C L, Lai Q H, Lin C S. Development of optical automatic positioning and wafer defect detection system[J]. Measurement Science and Technology, 27, 025205(2016).

    [99] Chen Z, Zhou D W, Liao H Y et al. Precision alignment of optical fibers based on telecentric stereo microvision[J]. IEEE/ASME Transactions on Mechatronics, 21, 1924-1934(2016).

    [100] Zhang J X, Hu S L, Shi H Q. Deep learning based object distance measurement method for binocular stereo vision blind area[J]. International Journal of Advanced Computer Science and Applications, 9, 090977(2018).

    [101] Guo B S, Sun J Y, Hua Y H et al. Femtosecond laser micro/nano-manufacturing: theories, measurements, methods, and applications[J]. Nanomanufacturing and Metrology, 3, 26-67(2020).

    [102] Buytaert J A N, Dirckx J J. Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution[J]. Journal of Biomedical Optics, 12, 014039(2007).

    [103] Morgan D, Jacobs R. Opportunities and challenges for machine learning in materials science[J]. Annual Review of Materials Research, 50, 71-103(2020).

    [104] Wang Z Y, Zhou D Y, Gong S H. Uncalibrated visual positioning using adaptive Kalman filter with dual rate structure for wafer chip in LED packaging[J]. Measurement, 191, 110829(2022).

    [105] Li H, Zhang X M, Yao S et al. An improved template-matching-based pose tracking method for planar nanopositioning stages using enhanced correlation coefficient[J]. IEEE Sensors Journal, 20, 6378-6387(2020).

    [106] Soto F, Wang J, Ahmed R et al. Medical micro/nanorobots in precision medicine[J]. Advanced Science, 7, 2002203(2020).

    [107] Cuny A P, Ponti A, Kündig T et al. Cell region fingerprints enable highly precise single-cell tracking and lineage reconstruction[J]. Nature Methods, 19, 1276-1285(2022).

    [108] Kim H, Park H, Lee S J. Effective method for drug injection into subcutaneous tissue[J]. Scientific Reports, 7, 9613(2017).

    [109] Mattoni G, Zubko P, Maccherozzi F et al. Striped nanoscale phase separation at the metal-insulator transition of heteroepitaxial nickelates[J]. Nature Communications, 7, 13141(2016).

    [110] Fathi-Hafshejani P, Johnson H, Ahmadi Z et al. Phase-selective and localized TiO2 coating on additive and wrought titanium by a direct laser surface modification approach[J]. ACS Omega, 5, 16744-16751(2020).

    [111] Pai K J, Lin C H. Equivalent circuit establishments of a GaN high-electron-mobility transistor and 635 nm laser diode for a short-pulsed rising current simulation[J]. Processes, 9, 1975(2021).

    [112] Niu Y N, Jia P G, Su J H et al. Tunable random fiber laser based on dual-grating structure[J]. Photonics, 10, 644(2023).

    [113] Umakoshi T, Tanaka M, Saito Y et al. White nanolight source for optical nanoimaging[J]. Science Advances, 6, eaba4179(2020).

    [114] Tan N Y J, Zhang X Q, Neo D W K et al. A review of recent advances in fabrication of optical Fresnel lenses[J]. Journal of Manufacturing Processes, 71, 113-133(2021).

    [115] Engelberg J, Zhou C, Mazurski N et al. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications[J]. Nanophotonics, 9, 361-370(2020).

    [116] Ali F, Aksu S. A hybrid broadband metalens operating at ultraviolet frequencies[J]. Scientific Reports, 11, 2303(2021).

    [117] Topac E. Design of a turbulent flow facility and development of an algorithm for PIV[D](2018).

    [118] Blom H, Rönnlund D, Scott L et al. Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy[J]. BMC Neuroscience, 12, 16(2011).

    [119] Maris J J E, Fu D L, Meirer F et al. Single-molecule observation of diffusion and catalysis in nanoporous solids[J]. Adsorption, 27, 423-452(2021).

    [120] Wu H, Zhang X M, Wang R Z et al. Displacement measurement of the compliant positioning stage based on a computer micro-vision method[J]. AIP Advances, 6, 025009(2016).

    [121] Thomas L S V, Gehrig J. Multi-template matching: a versatile tool for object-localization in microscopy images[J]. BMC Bioinformatics, 21, 1-8(2020).

    [123] Sun J M, Shen Z H, Wang Y et al. LoFTR: detector-free local feature matching with transformers[C], 8918-8927(2021).

    Tools

    Get Citation

    Copy Citation Text

    Chenyang Zhao, Jie Xiang, Kai Bian, Zijian Zhu, Qinghong Wan. Review of Optical Microvision-Based Precision Positioning Measurement (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(2): 0211021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Aug. 15, 2023

    Accepted: Oct. 13, 2023

    Published Online: Feb. 6, 2024

    The Author Email: Zhao Chenyang (zhaochenyang@hit.edu.cn)

    DOI:10.3788/LOP231924

    Topics