Laser & Optoelectronics Progress, Volume. 61, Issue 2, 0211021(2024)

Review of Optical Microvision-Based Precision Positioning Measurement (Invited)

Chenyang Zhao*, Jie Xiang, Kai Bian, Zijian Zhu, and Qinghong Wan
Author Affiliations
  • School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518057, Guangdong , China
  • show less
    Figures & Tables(21)
    Two commonly used illumination models in optical micro-vision-based measurement system. (a) Bright-field imaging model; (b) dark-field imaging model
    Dark-field imaging simulation. (a) Simulation of the defect surface and light intensity distribution[18]; (b) simulation of the etched surface step morphology and near-field light intensity distribution[21]
    Imaging models. (a) Perspective projection model; (b) parallel projection model
    Positioning method based on periodic fringe pattern[35]. (a) Composition of the measurement system; (b) centerline extraction of stripes; (c) processing result of noise filtering; (d) verification of angle measurement
    Sampling Moire measurement method. (a) Sampling Moire method principle[45]; (b) specimen deformation measurement tape[40]; (c) positioning measurement method using arbitrary periodic array pattern[46]
    Precision positioning methods based on checkerboard pattern. (a) Five-axis platform measurement[52]; (b) five-axis machine tool calibration based on micro-vision[42]; (c) six degrees of freedom measurement based on convolutional neural networks[54]
    Positioning measurement methods based on stripe coding pattern. (a) Measurement method based on the Manchester code[60]; (b) measurement method based on binary phase coding[61]; (c) measurement method based on M-sequence pseudo random coding[57]
    Two-dimensional coding pattern for visual localization measurement. (a) Pseudo-periodic coding with missing round holes[68]; (b) interwoven grid-like coding[59]; (c) missing rectangular coding by André's team[58, 62-63]; (d) missing rectangular encoding by Kim's team[64]; (e) encoding combined with M-sequence code and checkerboard grid[67]; (f) shifted circular encoding[56]
    Three typical speckle patterns[82]. (a) Surface texture; (b) synthetic speckle pattern; (c) interference speckle pattern
    Schematic of the fast and robust feature-based positioning (FRFP) method[92]
    Optical microscopic image of the surface microstructure[77, 92]. (a) Experimental result of the polar microstructure surface; (b) partial enlarged view; (c) surface topography measurement of the polar microstructure; (d) simulation result
    Biological cell localization technology. (a) Schematic of microdevice for immobilizing mouse embryos and 3 × 3 array of immobilized cells[96]; (b) micropipette segmentation[97]
    Application fields of micro-vision positioning measurement. (a) Three degrees of freedom nano-positioning[105]; (b) micro-nano robot control[106]; (c) wafer alignment[104]; (d) single-molecule positioning; (e) metallographic detection[109]; (f) material modification[110]; (g) drug injection[108]; (h) sample micromanipulation; (i) cell tracking[107]
    Development route of optical imaging hardware equipment. (a) Natural light source; (b) incandescent lamp; (c) laser light source[111-112]; (d) nano light source[113]; (e) spherical lens; (f) Fresnel lens; (g) superlens[115-116]; (h) photosensitive film; (i) photodiode; (j) CCD and CMOS[117]; (k) super-resolution detector[118-119]
    Comparison of image matching algorithms. (a) Template matching[121]; (b) feature point matching[92]; (c) deep learning matching[123]
    • Table 1. Different PSF expressions of models

      View table

      Table 1. Different PSF expressions of models

      PSF modelFeatureExpression

      Gaussian PSF

      (3D)

      Simple and intuitivehx,y,z=1σz2e-x2+y22σz2

      Defocused PSF

      (3D)26

      Extended depth of fieldhω,z=e-σz2ω2sinζω,zζω,zζω,z=zω1-ωKzi-z

      Born and Wolf PSF

      (3D)27

      Extended depth of fieldhx,y,z=C01J0kNAnx2+y20.5ρe-12jkρ2zNAn2ρdρ2

      Circular pupil PSF

      (2D)21

      Easy to simulatehx,yλfDx2+y2J12πλDfc-2n2/NA2-1x2+y22

      Square pupil PSF

      (2D)

      Easy to simulatehx,yλfDx2+y2sinc2πλDfc-2n2/NA2-1x2+y22
    • Table 2. Optical micro-vision configuration and imaging models

      View table

      Table 2. Optical micro-vision configuration and imaging models

      Optical configurationProjection model
      Conventional lensLarge depth of fieldPerspective projection
      Small depth of fieldParallel projection
      Telecentric lensParallel projection
      ConfocalPerspective projection
    • Table 3. Periodic-pattern-based measurement methods and their performance

      View table

      Table 3. Periodic-pattern-based measurement methods and their performance

      PatternMethodPreparationDegrees of freedomPrecisionRangeResolutionEfficiency
      Stripe patternImage pyramid34Quartz1(x12.5 nm2 μm
      Edge detection352(xθ7.46 mrad0.04 μm,0.29 μrad
      Wavelet transform362(xy10 nm
      Delayed Moiré fringes37Print2(x y0.036 mm15 Hz
      Array patternMonocular 3D reconstruction383(αβθ1"2π rad
      Discrete Fourier analysis39Etch mask3(xyθ<10-2 pixel<10 nm
      Discrete Fourier analysis18Iphone 4s screen3(xyθ

      3.5 nm(x

      8 nm(y)4 μrad(θ

      Sampling Moiré40Printed tape1(x<4 μm
      Grid patternCenter point extraction41Glass grille3(xyθ7 μm220 mm4 Hz
      CheckerboardMonocular PnP424(xyzθ<1 μm

      <50 μm(xy

      <20 μm(z

      360°(θ

      >10 Hz
    • Table 4. Pseudo-periodic pattern-based measurement methods and their performance

      View table

      Table 4. Pseudo-periodic pattern-based measurement methods and their performance

      PatternMethodPreparationDegrees of freedomPrecisionRangeResolutionEfficiency
      1D coding patternManchester encoding + periodic grating stripes601(x/θ100 mm<1 nm

      300 Hz(CPU)

      1 MHz(DSP)

      M-sequence pseudo-random coding57Mask1(x0.79 μm1310.72 mm0.3 m/s
      Binary phase encoding61Quartz mask1(θ0.1″360°

      0.044°

      (13 bits)

      500 Hz
      2D coding patternInterleaved trellis coding+Fourier analysis59Photolithography3(xyθ18.5 nm221.33 μm0.5 nm30 Hz
      Missing rectangle encoding+Fourier analysis5862-63Mask6

      1 nm(xy

      4 μrad(θ

      110 mm(xy

      10 mm(z

      <1 nm(xy

      < 0.1 mm(z

      <1 μrad(θ),

      <100 μrad(αβ

      30 Hz(512 pixel×512 pixel)
      Recognition of missing rectangular encoding feature points64Flat panel display6

      15 μm

      0.05°

      Shift cyclic ring coding5665-66Photolithography6

      1.6 μm(xy

      1.4 μm(z

      0.0132°

      230 mm(xy7 m/min
      M-sequence coding+checkerboard pattern67Photolithography21 µm80 mm(xy
    • Table 5. Nonperiodic pattern-based measurement methods and their performance

      View table

      Table 5. Nonperiodic pattern-based measurement methods and their performance

      PatternMethodPreparationDegrees of freedomPrecisionRangeResolution
      Speckle patternSpatial gradient70Computer simulation20.005 pixelLowLow
      Newton-Raphson71Spraying3500 μmLowLow
      Pro-A72Surface texture3400 nmLowHigh
      CIR73Surface projection21 nmLowHigh
      MicrostructurepatternTemplate matching74Ultraprecision machining2100 nmLargeLow
      Pattern recognition75Ultraprecision machining290 nmLargeHigh
      Neural network76Ultraprecision machining250 nmLargeHigh
      PMFE77Ultraprecision machining2600 nmLargeHigh
    • Table 6. Measuring method of distance in feature point matching

      View table

      Table 6. Measuring method of distance in feature point matching

      MethodExpression
      Euclidean distancedF,G=fi-gi2i=1,2,,n
      Cosine similaritycosF,G=fi×giai2×bi2i=1,2,,n
      Hamming distancehF,G=biFbiGi=1,2,,n
    Tools

    Get Citation

    Copy Citation Text

    Chenyang Zhao, Jie Xiang, Kai Bian, Zijian Zhu, Qinghong Wan. Review of Optical Microvision-Based Precision Positioning Measurement (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(2): 0211021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Aug. 15, 2023

    Accepted: Oct. 13, 2023

    Published Online: Feb. 6, 2024

    The Author Email: Zhao Chenyang (zhaochenyang@hit.edu.cn)

    DOI:10.3788/LOP231924

    Topics