Opto-Electronic Engineering, Volume. 49, Issue 2, 210333-1(2022)

Research progress of laser-assisted chemical vapor deposition

Lisha Fan1...2,3, Fan Liu1,2,3, Guolong Wu1,2,3, S. Kovalenko Volodymyr1,2,3,4, and Jianhua Yao1,23,* |Show fewer author(s)
Author Affiliations
  • 1Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 2College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 3Collaborative Innovation Center of High-End Laser Manufacturing Equipment (National 2011 Plan), Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 4Laser Technology Research Institute, National Technical University of Ukraine, Kiev 03056, Ukraine
  • show less
    Figures & Tables(22)
    Different relaxation channels for energy transfer during binary collisions of molecules[79]
    Commonly used experimental setup for pyrolysis LCVD
    (a) Plot of three regimes for incubation, nucleation and coalescence of W deposited at 2.44 W; (b) Thickness of W films deposited on glass substrates plotted as a function of deposition time; (c) Surface morphology of deposited W films deposited at different laser power[81]
    SEM images of diamond grown on tungsten surface of (a) poorly and (b) heavily nucleated[96]
    (a) XRD patterns of the β-SiC films prepared at different laser power, deposition pressure and deposition temperature; (b) Effects of laser power and deposition pressure on preferred crystalline orientations of β-SiC films[97]
    (a) Surface and (b) cross-sectional SEM images of HfO2 films prepared using conventional CVD at 1173 K, (c), (e) surface and the corresponding (d), (f) cross-sectional SEM images of (c), (d) HfO2 films prepared at 1203 K and (e), (f) HfO2 films prepared at 1383 K by pyrolysis CVD, effect of deposition temperature on deposition rate, crystallite size, and morphological evolution in HfO2 films prepared using (g) conventional CVD and (h) pyrolysis CVD[71]
    Surface and cross‐sectional SEM images of the SrTiO3 films prepared at 760 K (a, b) , 957 K (c, d) and 1104 K (e, f) with a laser power of 150 W, respectively; (g) Influences of the deposition temperature on thickness, grains size, grains shape, and preferred orientation of the SrTiO3 films[128]
    (a), (b) TEM observations and (c) atomic configuration of the nanoforest-like 3C-SiC/graphene composite films deposited at 1523 K and 400 Pa, (d) schematic illustration and (e) cycling performance of 3C-SiC/graphene nanoforest composite films with stable framework and continuous electron pathways[136]
    Commonly used experimental setup and principle of photolysis LCVD
    SEM photographs and corresponding 3D images of the deposited tungsten patterns for various laser power. (a) 0.21 mW; (b) 0.249 mW; (c) 0.468 mW; (d) 0.607 mW; (e) Variation of electrical resistivity of the deposit tungsten with respect to laser power; (f) Example of the tungsten interconnect deposited by LCVD for thin film transistor-liquid crystal display circuit repair[150]
    (a) Surface and cross-sectional SEM images of diamond films prepared at different laser energy densities; (b) The reaction process diagram of active species in the combustion flame under the ultraviolet light irradiation[61]
    Surface image surface and cross-sectional SEM images of TiNx films prepared at Tpre = 423 K with varied laser power. (a) PL =50 W; (b) PL =100 W; (c) PL =150 W; (d) PL =200 W, effects of Tpre and PL on (e) the deposition rate and (f) the deposition temperature of TiNx films[170]
    Si3N4 film prepared by LVCD. (a) Precursor gas ratio and (b) RF power with different laser photolysis condition [176]
    Commonly used experimental setup for laser resonant excitation LCVD
    The influence of laser resonant excitation on CVD of carbon nano-onions. (a)~(c) Photographs of ethylene–oxygen flames; (d)~(f) High-resolution TEM images of CNOs, showing their atomic-level microstructure; (g), (h) Raman spectra and its fitting curve of CNOs[180]
    BDD prepared using resonant excitation LCVD method and their electrochemical performance in glucose tests. (a) SEM images of BDD films prepared at different laser power; (b) Schematic illustration of glucose detection setup; (c) CV scans; (d) Ampere scanning; (e) Potential window; (f) Nyquist plots[43]
    (a, b) Cross-sectional SEM images of GaN films and (c, d) XRD patterns of GaN grown at different temperature in LMOCVD and conventional MOCVD process, respectively[54]
    (a) Experimental setup for the CO2 laser-assisted CCVD and (b) optical emission spectra and (c) mole fractions of the species of NH3/C2H2/O2 flames under different laser excitations measured using mass spectrometer[181]; (d) Optical images of C2H4/C2H2/O2 flames[184]
    • Table 1. Comparison of various CVD techniques

      View table
      View in Article

      Table 1. Comparison of various CVD techniques

      技术类别优点缺点
      MOCVD大面积制备,高沉积精度设备成本高,材料要求苛刻,沉积速度慢
      PCVD较低沉积温度,较快沉积速度,设备维护简单反应过程复杂难以控制
      HFCVD大面积制备,适用于复杂形貌,操作系统简单沉积速度慢
      CCVD大气环境下制备沉积速度慢
      LCVD可局部制备,高沉积精度/效率/质量,成膜材料种类广泛设备成本高,操作略复杂
    • Table 2. Commonly used laser sources for LCVD

      View table
      View in Article

      Table 2. Commonly used laser sources for LCVD

      激光器光谱波长/nm单光子能量/eV参考文献
      Nd:YAG红外10641.2[42-44]
      绿光5322.3[45-46]
      紫外3513.5[47]
      CO2红外106000.1[48-52]
      红外92190.1[27, 53, 54]
      Ar+可见光514.52.4[55-57]
      InGaAs红外8081.5[58]
      ArF紫外1936.4[48, 59]
      KrCl紫外2225.5[60]
      KrF紫外2485.0[61-63]
      XeCl紫外3084.0[64]
    • Table 3. Recent reports of thin film deposition using pyrolysis LCVD

      View table
      View in Article

      Table 3. Recent reports of thin film deposition using pyrolysis LCVD

      材料基体光源沉积参数
      温度/(°C)速率/(μm/h)
      2021[28]SmBa2Cu3O7-δLaAlO3波长808 nm半导体连续激光器7808.76
      2020[71]HfO2AlN波长976 nm半导体连续激光器600~130067
      2020[72]BCNSiO2波长1064 nm Nd:YAG连续激光器110018.4
      2020[73]ZrCNCNd:YAG连续激光器1100~118040
      2020[74]SrTiO3MgAl2O4波长1064 nm Nd:YAG连续激光器90020
      2020[75]Y-doped BaZrO3AlN波长1064 nm Nd:YAG连续激光器645.1~656.32.67
      2020[76]β-Yb2Si2O7, X1/X2-Yb2SiO5AlN波长808 nm半导体连续激光器750~1100114~423、353~943
      2019[77]LaPO4Al2O3波长1064 nm Nd:YAG连续激光器802~84758.6
      2019[78]SiBCNGraphite波长1064 nm Nd:YAG连续激光器1210~14101620
    • Table 4. Reports of thin film deposition using photolysis LCVD recently

      View table
      View in Article

      Table 4. Reports of thin film deposition using photolysis LCVD recently

      材料基体光源沉积参数
      温度/(°C)速率/(μm/h)
      2020[141]金刚石Si波长532 nm超高斯分布连续激光器700~9000.38
      2019[47]WTFT-LCD波长351 nm脉宽45 ns Nd:YAG脉冲激光器> 450-
      2018[59]金刚石WC波长193 nm脉宽15 ns ArF、波长248 nm脉宽20 ns KrF准分子激光器217711、10.3
      2018[142]β-SiCβ-SiC波长808 nm InGaAlAs半导体激光器1067~125750
      2018[143]Si3N4Si/PET波长193 nm ArF 准分子激光器 1000.93
      2017[144]NiU波长248 nm KrF 准分子激光器 165~200-
      2011[145]Cr2O3Al2O3波长248 nm脉宽30 ns KrF准分子激光器室温360
    Tools

    Get Citation

    Copy Citation Text

    Lisha Fan, Fan Liu, Guolong Wu, S. Kovalenko Volodymyr, Jianhua Yao. Research progress of laser-assisted chemical vapor deposition[J]. Opto-Electronic Engineering, 2022, 49(2): 210333-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 20, 2021

    Accepted: --

    Published Online: Apr. 6, 2022

    The Author Email: Yao Jianhua (laser@zjut.edu.cn)

    DOI:10.12086/oee.2022.210333

    Topics