Optics and Precision Engineering, Volume. 30, Issue 1, 12(2022)

Research progress of maskless lithography based on digital micromirror devices

Siqi ZHANG1... Sihan ZHOU1, Zhuojun YANG1, Zhi XU2, Changyong LAN1 and Chun LI1,* |Show fewer author(s)
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu0699, China
  • 2Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan5349, China
  • show less
    References(62)

    [1] [1] 1崔铮. 微纳米加工技术及其应用[M]. 北京: 高等教育出版社, 2005.CUIZH. Micro-Nanofabrication Technologies and Applications[M]. Beijing: Higher Education Press, 2005. (in Chinese)

    [2] L J HORNBECk, T I INCORPORATED. Spatial light modulator and method.

    [3] T C POON, R JUDAY, T HARA. Spatial light modulators—research, development, and applications: introduction to the feature issue. Applied Optics, 37, 7471(1998).

    [4] L J HORNBECK. 128 multiplied by 128 DEFORMABLE MIRROR DEVICE. Oil and Gas Journal, 24, 199-205(1982).

    [5] L J HORNBECK. 128 × 128 deformable mirror device. IEEE Transactions on Electron Devices, 30, 539-545(1983).

    [7] [7] 7姚汉民, 胡松, 邢廷文. 光学投影曝光微纳加工技术[M]. 北京: 北京工业大学出版社, 2006: 7-48.YAOH M, HUS, XINGT W. Optical Projection Exposure Micro-nano Processing Technology[M]. Beijing: Beijing University of Technology Press, 2006: 7-48. (in Chinese)

    [8] [8] 8梁庆九. 基于365 nm LED光源的无掩模数字光刻特性研究[D]. 广州: 广东工业大学, 2017: 16. doi: 10.21147/j.issn.1000-9604.2018.01.05LIANGQ J. Research of Characters of Maskless Digital Lithography Based on 365nm LED Light Source[D]. Guangzhou: Guangdong University of Technology, 2017: 16. (in Chinese). doi: 10.21147/j.issn.1000-9604.2018.01.05

    [9] J OSSMANN, M ENDRES, R STUETZLE. Illumination optical system for microlithography.

    [10] [10] 10殷智勇, 汪岳峰, 贾文武, 等. 基于微透镜阵列的光束积分系统的性能分析[J]. 中国激光, 2012, 39(7): 29-35. doi: 10.3788/CJL201239.0702007YINZH Y, WANGY F, JIAW W, et al. Performance analysis of beam integrator system based on microlens array[J]. Chinese Journal of Lasers, 2012, 39(7): 29-35. (in Chinese). doi: 10.3788/CJL201239.0702007

    [11] [11] 11蔡燕民, 王向朝, 黄惠杰. 共轭距可变的光刻投影物镜光学设计[J]. 中国激光, 2014, 41(4): 285-290. doi: 10.3788/CJL201441.0416003CAIY M, WANGX ZH, HUANGH J. Optical design of lithography projective lens with variable total track[J]. Chinese Journal of Lasers, 2014, 41(4): 285-290. (in Chinese). doi: 10.3788/CJL201441.0416003

    [12] K KIM, S HAN, J YOON et al. Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography. Applied Physics Letters, 109, 234101(2016).

    [13] R CHEN, H LIU, H ZHANG et al. Edge smoothness enhancement in DMD scanning lithography system based on a wobulation technique. Optics Express, 25, 21958-21968(2017).

    [14] J H LIU, J B LIU, Q Y DENG et al. Intensity modulation based optical proximity optimization for the maskless lithography. Optics Express, 28, 548(2020).

    [15] C A MACK. Fundamental Principles of Optical Lithography: The Science of Microfabrication(2007).

    [16] J HUR, M SEO. Optical proximity corrections for digital micromirror device-based maskless lithography. Journal of the Optical Society of Korea, 16, 221-227(2012).

    [17] L W LIANG, J Y ZHOU, L L XIANG et al. Simulation of the effect of incline incident angle in DMD maskless lithography. Journal of Physics: Conference Series, 844(2017).

    [18] K F CHAN, Z FENG, Y REN et al. High-resolution maskless lithography. Journal of Microlithography Microfabrication and Microsystems, 2, 331-339(2003).

    [19] W H MEI. Point array maskless lithography.

    [20] R YANG, K F CHAN, Z Q FENG et al. Design and fabrication of microlens and spatial filter array by self-alignment, 4985, 26-36(2003).

    [21] R D PINER, J ZHU, F XU et al. “Dip-pen” nanolithography. Science, 283, 661-663(1999).

    [22] X LIAO, K A BROWN, A L SCHMUCKER et al. Desktop nanofabrication with massively multiplexed beam pen lithography. Nature Communications, 4, 2103(2013).

    [23] Y H LIU, Y Y ZHAO, F JIN et al. Λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning. Nano Letters, 21, 3915-3921(2021).

    [24] K TAKAHASHI, J SETOYAMA. A UV-exposure system using DMD. Electronics and Communications in Japan (Part II: Electronics), 83, 56-58(2000).

    [25] [25] 25郭小伟. SLM无掩模光刻技术的研究[D]. 成都: 四川大学, 2007: 196. doi: 10.7666/d.y1213055GUOX W. Research on SLM-based Maskless Lithography[D]. Chengdu: Sichuan University, 2007: 196. (in Chinese). doi: 10.7666/d.y1213055

    [26] W IWASAKI, T TAKESHITA, Y PENG et al. Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment. Japanese Journal of Applied Physics, 51(2012).

    [27] M S KANG, C HAN, H JEON. Submicrometer-scale pattern generation via maskless digital photolithography. Optica, 7, 1788(2020).

    [28] Y H LIU, Y Y ZHAO, X Z DONG et al. Multi-scale structure patterning by digital-mask projective lithography with an alterable projective scaling system. AIP Advances, 8(2018).

    [29] [29] 29池文明. 用于光刻成像的DMD图像曝光方法研究与实现[D]. 成都: 电子科技大学, 2017: 33-39.CHIW M. Research and Implementation of DMD Image Exposure Method for Lithography[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 33-39. (in Chinese)

    [30] D DALY, R F STEVENS, M C HUTLEY et al. The manufacture of microlenses by melting photoresist. Measurement Science and Technology, 1, 759-766(1990).

    [31] L H ERDMANN, A DEPARNAY, F WIRTH et al. MEMS-based lithography for the fabrication of micro-optical components, 5347, 79-84(2003).

    [32] N N LUO, Z M ZHANG. Fabrication of a curved microlens array using double gray-scale digital maskless lithography. Journal of Micromechanics and Microengineering, 27(2017).

    [33] C YUAN, K KOWSARI, S PANJWANI et al. Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing. ACS Applied Materials & Interfaces, 11, 40662-40668(2019).

    [34] H Y YANG, S RATCHEV, M TURITTO et al. Rapid manufacturing of non-assembly complex micro-devices by microstereolithography. Tsinghua Science & Technology, 14, 164-167(2009).

    [35] [35] 35摩方精密. 基于面投影微立体光刻技术(PμSL)的3D打印[EB/OL]. (2020-05-21). http://www.bmftec.cn/zh/press/details/119. doi: 10.1016/j.compstruct.2020.112710Boston Micro Fabrication. 3D printing based on surface projection micro-stereolithography (PμSL)[EB/OL]. (2020-05-21). http://www.bmftec.cn/zh/press/details/119.(in Chinese). doi: 10.1016/j.compstruct.2020.112710

    [36] A BERTSCH, H LORENZ, P RENAUD. 3D microfabrication by combining microstereolithography and thick resist UV lithography. Sensors and Actuators A: Physical, 73, 14-23(1999).

    [37] C SUN, N FANG, D M WU et al. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A: Physical, 121, 113-120(2005).

    [38] J W CHOI, E MACDONALD, R WICKER. Multi-material microstereolithography. The International Journal of Advanced Manufacturing Technology, 49, 543-551(2010).

    [39] J BERNSTEIN, R MILLER, W KELLEY et al. Low-noise MEMS vibration sensor for geophysical applications. Journal of Microelectromechanical Systems, 8, 433-438(1999).

    [40] H K XIE, Y T PAN, G K FEDDER. A CMOS-MEMS mirror with curled-hinge comb drives. Journal of Microelectromechanical Systems, 12, 450-457(2003).

    [41] F WANG, R CHENG, X X LI. MEMS vertical probe cards with ultra densely arrayed metal probes for wafer-level IC testing. Journal of Microelectromechanical Systems, 18, 933-941(2009).

    [42] ZHANG, LIU, WU, et al, ZHANG, LIU, WU, et al, ZHANG, LIU, WU, et al. Experiment research on micro-/nano processing technology of graphite as basic MEMS material. Applied Sciences, 9, 3103(2019).

    [43] X Y ZHENG, H LEE, T H WEISGRABER et al. Ultralight, ultrastiff mechanical metamaterials. Science, 344, 1373-1377(2014).

    [44] X ZHENG, W SMITH, J JACKSON et al. Multiscale metallic metamaterials. Nature Materials, 15, 1100-1106(2016).

    [45] S K W DERTINGER, D T CHIU, N L JEON et al. Generation of gradients having complex shapes using microfluidic networks. Analytical Chemistry, 73, 1240-1246(2001).

    [46] D N BRESLAUER, P J LEE, L P LEE. Microfluidics-based systems biology. Molecular BioSystems, 2, 97-112(2006).

    [47] C D CHIN, T LAKSANASOPIN, Y K CHEUNG et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nature Medicine, 17, 1015-1019(2011).

    [48] S NAGL, P SCHULZE, S OHLA et al. Microfluidic chips for chirality exploration. Analytical Chemistry, 83, 3232-3238(2011).

    [49] S H SONG, K KIM, S E CHOI et al. Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication. Optics Letters, 39, 5162-5165(2014).

    [50] J YOON, W PARK. Microsized 3D hydrogel printing system using microfluidic maskless lithography and single axis stepper motor. BioChip Journal, 14, 317-325(2020).

    [51] J W CHOI, R WICKER, S H LEE et al. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. Journal of Materials Processing Technology, 209, 5494-5503(2009).

    [52] BOCHOVE BVAN, G HANNINK, P BUMA et al. Preparation of designed poly(trimethylene carbonate) meniscus implants by stereolithography: challenges in stereolithography. Macromolecular Bioscience, 16, 1853-1863(2016).

    [53] E J MOTT, M BUSSO, X Y LUO et al. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds. Materials Science and Engineering:, 301-311(2016).

    [54] BOCHOVE BVAN, D W GRIJPMA. Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications. Journal of Biomaterials Science(Polymer Edition), 30, 77-106(2019).

    [55] D M WU, N FANG, C SUN et al. Fabrication and characterization of THz plasmonic filter, 229-231(2002).

    [56] Y M SHIN, L R BARNETT, D GAMZINA et al. Terahertz vacuum electronic circuits fabricated by UV lithographic molding and deep reactive ion etching. Applied Physics Letters, 95, 181505(2009).

    [57] C D JOYE, J P CALAME, M GARVEN et al. UV-LIGA microfabrication of 220 GHz sheet beam amplifier gratings with SU-8 photoresists. Journal of Micromechanics and Microengineering, 20, 125016(2010).

    [58] [58] 58李克训, 赵亚丽, 江波, 等. 光学超材料的制备方法与参数提取[J]. 强激光与粒子束, 2015, 27(10): 169-173. doi: 10.11884/HPLPB201527.103233LIK X, ZHAOY L, JIANGB, et al. Preparation method of optical metamaterials and parameter extraction[J]. High Power Laser and Particle Beams, 2015, 27(10): 169-173. (in Chinese). doi: 10.11884/HPLPB201527.103233

    [59] [59] 59田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程, 2017, 44(1): 69-76, 119. doi: 10.3969/j.issn.1003-501X.2017.01.006TIANX Y, YINL X, LID CH. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69-76, 119. (in Chinese). doi: 10.3969/j.issn.1003-501X.2017.01.006

    [60] [60] 60李战华, 吴健康, 胡国庆. 微流控芯片中的流体流动[M]. 北京: 科学出版社, 2012: 282.LIZH H, WUJ K, HUG Q. Fluid Flow in Microfluidic Chips[M]. Beijing: Science Press, 2012: 282. (in Chinese)

    [61] T THORSEN, S J MAERKL, S R QUAKE. Microfluidic large-scale integration. Science, 298, 580-584(2002).

    [62] [62] 62丁翔宇. 基于数字微镜芯片的无模光刻微加工技术研究[D]. 合肥: 中国科学技术大学, 2014: 25-38. doi: 10.1364/ao.53.005307DINGX Y. The Research of Maskless Microscopic Lithography Micromachining with Digital Micro-mirror Device[D]. Hefei: University of Science and Technology of China, 2014: 25-38. (in Chinese). doi: 10.1364/ao.53.005307

    Tools

    Get Citation

    Copy Citation Text

    Siqi ZHANG, Sihan ZHOU, Zhuojun YANG, Zhi XU, Changyong LAN, Chun LI. Research progress of maskless lithography based on digital micromirror devices[J]. Optics and Precision Engineering, 2022, 30(1): 12

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Modern Applied Optics

    Received: Aug. 20, 2021

    Accepted: --

    Published Online: Jan. 20, 2022

    The Author Email: LI Chun (lichun@uestc.edu.cn)

    DOI:10.37188/OPE.20223001.0012

    Topics