Optics and Precision Engineering, Volume. 30, Issue 1, 12(2022)
Research progress of maskless lithography based on digital micromirror devices
[1] [1] 1崔铮. 微纳米加工技术及其应用[M]. 北京: 高等教育出版社, 2005.CUIZH. Micro-Nanofabrication Technologies and Applications[M]. Beijing: Higher Education Press, 2005. (in Chinese)
[2] L J HORNBECk, T I INCORPORATED. Spatial light modulator and method.
[3] T C POON, R JUDAY, T HARA. Spatial light modulators—research, development, and applications: introduction to the feature issue. Applied Optics, 37, 7471(1998).
[4] L J HORNBECK. 128 multiplied by 128 DEFORMABLE MIRROR DEVICE. Oil and Gas Journal, 24, 199-205(1982).
[5] L J HORNBECK. 128 × 128 deformable mirror device. IEEE Transactions on Electron Devices, 30, 539-545(1983).
[7] [7] 7姚汉民, 胡松, 邢廷文. 光学投影曝光微纳加工技术[M]. 北京: 北京工业大学出版社, 2006: 7-48.YAOH M, HUS, XINGT W. Optical Projection Exposure Micro-nano Processing Technology[M]. Beijing: Beijing University of Technology Press, 2006: 7-48. (in Chinese)
[8] [8] 8梁庆九. 基于365 nm LED光源的无掩模数字光刻特性研究[D]. 广州: 广东工业大学, 2017: 16. doi: 10.21147/j.issn.1000-9604.2018.01.05LIANGQ J. Research of Characters of Maskless Digital Lithography Based on 365nm LED Light Source[D]. Guangzhou: Guangdong University of Technology, 2017: 16. (in Chinese). doi: 10.21147/j.issn.1000-9604.2018.01.05
[9] J OSSMANN, M ENDRES, R STUETZLE. Illumination optical system for microlithography.
[10] [10] 10殷智勇, 汪岳峰, 贾文武, 等. 基于微透镜阵列的光束积分系统的性能分析[J]. 中国激光, 2012, 39(7): 29-35. doi: 10.3788/CJL201239.0702007YINZH Y, WANGY F, JIAW W, et al. Performance analysis of beam integrator system based on microlens array[J]. Chinese Journal of Lasers, 2012, 39(7): 29-35. (in Chinese). doi: 10.3788/CJL201239.0702007
[11] [11] 11蔡燕民, 王向朝, 黄惠杰. 共轭距可变的光刻投影物镜光学设计[J]. 中国激光, 2014, 41(4): 285-290. doi: 10.3788/CJL201441.0416003CAIY M, WANGX ZH, HUANGH J. Optical design of lithography projective lens with variable total track[J]. Chinese Journal of Lasers, 2014, 41(4): 285-290. (in Chinese). doi: 10.3788/CJL201441.0416003
[12] K KIM, S HAN, J YOON et al. Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography. Applied Physics Letters, 109, 234101(2016).
[13] R CHEN, H LIU, H ZHANG et al. Edge smoothness enhancement in DMD scanning lithography system based on a wobulation technique. Optics Express, 25, 21958-21968(2017).
[14] J H LIU, J B LIU, Q Y DENG et al. Intensity modulation based optical proximity optimization for the maskless lithography. Optics Express, 28, 548(2020).
[15] C A MACK. Fundamental Principles of Optical Lithography: The Science of Microfabrication(2007).
[16] J HUR, M SEO. Optical proximity corrections for digital micromirror device-based maskless lithography. Journal of the Optical Society of Korea, 16, 221-227(2012).
[17] L W LIANG, J Y ZHOU, L L XIANG et al. Simulation of the effect of incline incident angle in DMD maskless lithography. Journal of Physics: Conference Series, 844(2017).
[18] K F CHAN, Z FENG, Y REN et al. High-resolution maskless lithography. Journal of Microlithography Microfabrication and Microsystems, 2, 331-339(2003).
[19] W H MEI. Point array maskless lithography.
[20] R YANG, K F CHAN, Z Q FENG et al. Design and fabrication of microlens and spatial filter array by self-alignment, 4985, 26-36(2003).
[21] R D PINER, J ZHU, F XU et al. “Dip-pen” nanolithography. Science, 283, 661-663(1999).
[22] X LIAO, K A BROWN, A L SCHMUCKER et al. Desktop nanofabrication with massively multiplexed beam pen lithography. Nature Communications, 4, 2103(2013).
[23] Y H LIU, Y Y ZHAO, F JIN et al.
[24] K TAKAHASHI, J SETOYAMA. A UV-exposure system using DMD. Electronics and Communications in Japan (Part II: Electronics), 83, 56-58(2000).
[25] [25] 25郭小伟. SLM无掩模光刻技术的研究[D]. 成都: 四川大学, 2007: 196. doi: 10.7666/d.y1213055GUOX W. Research on SLM-based Maskless Lithography[D]. Chengdu: Sichuan University, 2007: 196. (in Chinese). doi: 10.7666/d.y1213055
[26] W IWASAKI, T TAKESHITA, Y PENG et al. Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment. Japanese Journal of Applied Physics, 51(2012).
[27] M S KANG, C HAN, H JEON. Submicrometer-scale pattern generation via maskless digital photolithography. Optica, 7, 1788(2020).
[28] Y H LIU, Y Y ZHAO, X Z DONG et al. Multi-scale structure patterning by digital-mask projective lithography with an alterable projective scaling system. AIP Advances, 8(2018).
[29] [29] 29池文明. 用于光刻成像的DMD图像曝光方法研究与实现[D]. 成都: 电子科技大学, 2017: 33-39.CHIW M. Research and Implementation of DMD Image Exposure Method for Lithography[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 33-39. (in Chinese)
[30] D DALY, R F STEVENS, M C HUTLEY et al. The manufacture of microlenses by melting photoresist. Measurement Science and Technology, 1, 759-766(1990).
[31] L H ERDMANN, A DEPARNAY, F WIRTH et al. MEMS-based lithography for the fabrication of micro-optical components, 5347, 79-84(2003).
[32] N N LUO, Z M ZHANG. Fabrication of a curved microlens array using double gray-scale digital maskless lithography. Journal of Micromechanics and Microengineering, 27(2017).
[33] C YUAN, K KOWSARI, S PANJWANI et al. Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing. ACS Applied Materials & Interfaces, 11, 40662-40668(2019).
[34] H Y YANG, S RATCHEV, M TURITTO et al. Rapid manufacturing of non-assembly complex micro-devices by microstereolithography. Tsinghua Science & Technology, 14, 164-167(2009).
[35] [35] 35摩方精密. 基于面投影微立体光刻技术(PμSL)的3D打印[EB/OL]. (2020-05-21). http://www.bmftec.cn/zh/press/details/119. doi: 10.1016/j.compstruct.2020.112710Boston Micro Fabrication. 3D printing based on surface projection micro-stereolithography (PμSL)[EB/OL]. (2020-05-21). http://www.bmftec.cn/zh/press/details/119.(in Chinese). doi: 10.1016/j.compstruct.2020.112710
[36] A BERTSCH, H LORENZ, P RENAUD. 3D microfabrication by combining microstereolithography and thick resist UV lithography. Sensors and Actuators A: Physical, 73, 14-23(1999).
[37] C SUN, N FANG, D M WU et al. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A: Physical, 121, 113-120(2005).
[38] J W CHOI, E MACDONALD, R WICKER. Multi-material microstereolithography. The International Journal of Advanced Manufacturing Technology, 49, 543-551(2010).
[39] J BERNSTEIN, R MILLER, W KELLEY et al. Low-noise MEMS vibration sensor for geophysical applications. Journal of Microelectromechanical Systems, 8, 433-438(1999).
[40] H K XIE, Y T PAN, G K FEDDER. A CMOS-MEMS mirror with curled-hinge comb drives. Journal of Microelectromechanical Systems, 12, 450-457(2003).
[41] F WANG, R CHENG, X X LI. MEMS vertical probe cards with ultra densely arrayed metal probes for wafer-level IC testing. Journal of Microelectromechanical Systems, 18, 933-941(2009).
[42] ZHANG, LIU, WU, et al, ZHANG, LIU, WU, et al, ZHANG, LIU, WU, et al. Experiment research on micro-/nano processing technology of graphite as basic MEMS material. Applied Sciences, 9, 3103(2019).
[43] X Y ZHENG, H LEE, T H WEISGRABER et al. Ultralight, ultrastiff mechanical metamaterials. Science, 344, 1373-1377(2014).
[44] X ZHENG, W SMITH, J JACKSON et al. Multiscale metallic metamaterials. Nature Materials, 15, 1100-1106(2016).
[45] S K W DERTINGER, D T CHIU, N L JEON et al. Generation of gradients having complex shapes using microfluidic networks. Analytical Chemistry, 73, 1240-1246(2001).
[46] D N BRESLAUER, P J LEE, L P LEE. Microfluidics-based systems biology. Molecular BioSystems, 2, 97-112(2006).
[47] C D CHIN, T LAKSANASOPIN, Y K CHEUNG et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nature Medicine, 17, 1015-1019(2011).
[48] S NAGL, P SCHULZE, S OHLA et al. Microfluidic chips for chirality exploration. Analytical Chemistry, 83, 3232-3238(2011).
[49] S H SONG, K KIM, S E CHOI et al. Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication. Optics Letters, 39, 5162-5165(2014).
[50] J YOON, W PARK. Microsized 3D hydrogel printing system using microfluidic maskless lithography and single axis stepper motor. BioChip Journal, 14, 317-325(2020).
[51] J W CHOI, R WICKER, S H LEE et al. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. Journal of Materials Processing Technology, 209, 5494-5503(2009).
[52] BOCHOVE BVAN, G HANNINK, P BUMA et al. Preparation of designed poly(trimethylene carbonate) meniscus implants by stereolithography: challenges in stereolithography. Macromolecular Bioscience, 16, 1853-1863(2016).
[53] E J MOTT, M BUSSO, X Y LUO et al. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds. Materials Science and Engineering:, 301-311(2016).
[54] BOCHOVE BVAN, D W GRIJPMA. Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications. Journal of Biomaterials Science(Polymer Edition), 30, 77-106(2019).
[55] D M WU, N FANG, C SUN et al. Fabrication and characterization of THz plasmonic filter, 229-231(2002).
[56] Y M SHIN, L R BARNETT, D GAMZINA et al. Terahertz vacuum electronic circuits fabricated by UV lithographic molding and deep reactive ion etching. Applied Physics Letters, 95, 181505(2009).
[57] C D JOYE, J P CALAME, M GARVEN et al. UV-LIGA microfabrication of 220 GHz sheet beam amplifier gratings with SU-8 photoresists. Journal of Micromechanics and Microengineering, 20, 125016(2010).
[58] [58] 58李克训, 赵亚丽, 江波, 等. 光学超材料的制备方法与参数提取[J]. 强激光与粒子束, 2015, 27(10): 169-173. doi: 10.11884/HPLPB201527.103233LIK X, ZHAOY L, JIANGB, et al. Preparation method of optical metamaterials and parameter extraction[J]. High Power Laser and Particle Beams, 2015, 27(10): 169-173. (in Chinese). doi: 10.11884/HPLPB201527.103233
[59] [59] 59田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程, 2017, 44(1): 69-76, 119. doi: 10.3969/j.issn.1003-501X.2017.01.006TIANX Y, YINL X, LID CH. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69-76, 119. (in Chinese). doi: 10.3969/j.issn.1003-501X.2017.01.006
[60] [60] 60李战华, 吴健康, 胡国庆. 微流控芯片中的流体流动[M]. 北京: 科学出版社, 2012: 282.LIZH H, WUJ K, HUG Q. Fluid Flow in Microfluidic Chips[M]. Beijing: Science Press, 2012: 282. (in Chinese)
[61] T THORSEN, S J MAERKL, S R QUAKE. Microfluidic large-scale integration. Science, 298, 580-584(2002).
[62] [62] 62丁翔宇. 基于数字微镜芯片的无模光刻微加工技术研究[D]. 合肥: 中国科学技术大学, 2014: 25-38. doi: 10.1364/ao.53.005307DINGX Y. The Research of Maskless Microscopic Lithography Micromachining with Digital Micro-mirror Device[D]. Hefei: University of Science and Technology of China, 2014: 25-38. (in Chinese). doi: 10.1364/ao.53.005307
Get Citation
Copy Citation Text
Siqi ZHANG, Sihan ZHOU, Zhuojun YANG, Zhi XU, Changyong LAN, Chun LI. Research progress of maskless lithography based on digital micromirror devices[J]. Optics and Precision Engineering, 2022, 30(1): 12
Category: Modern Applied Optics
Received: Aug. 20, 2021
Accepted: --
Published Online: Jan. 20, 2022
The Author Email: LI Chun (lichun@uestc.edu.cn)