Journal of the Chinese Ceramic Society, Volume. 52, Issue 5, 1761(2024)

Research Progress of Hydride Vapor Phase Epitaxy Technology for AlN Single Crystal

ZHANG Dian1... ZHU Rongxin1, YANG Xiaofeng1 and LIU Yijun2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(91)

    [1] [1] MORKO? H. Growth of nitride semiconductors[M]//Nitride Semiconductors and Devices. Berlin, Heidelberg: Springer, 1999: 83-148.

    [2] [2] YU R X, LIU G X, WANG G D, et al. Ultrawide-bandgap semiconductor AlN crystals: growth and applications[J]. J Mater Chem C, 2021, 9(6): 1852-1873.

    [3] [3] TSAO J Y, CHOWDHURY S, HOLLIS M A, et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges[J]. Adv Electr Mater, 2018, 4(1): 1600501.

    [4] [4] KNEISSL M, SEONG T Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nat Photon, 2019, 13(4): 233-244.

    [5] [5] WU H L, WU W C, ZHANG H X, et al. All AlGaN epitaxial structure solar-blind avalanche photodiodes with high efficiency and high gain[J]. Appl Phys Express, 2016, 9(5): 052103.

    [6] [6] ZHANG Z Y, KUSHIMOTO M, SAKAI T, et al. A 271.8 nm deep-ultraviolet laser diode for room temperature operation[J]. Appl Phys Express, 2019, 12(12): 124003.

    [7] [7] MACKEY T K, CONTRERAS J T, LIANG B A. The Minamata Convention on Mercury: Attempting to address the global controversy of dental amalgam use and mercury waste disposal[J]. Sci Total Environ, 2014, 472: 125-129.

    [8] [8] LIU S F, LUO W, LI D, et al. Sec-eliminating the SARS-CoV-2 by AlGaN based high power deep ultraviolet light source[J]. Adv Funct Mater, 2021, 31(7): 2008452.

    [9] [9] ZOLLNER C J, DENBAARS S P, SPECK J S, et al. Germicidal ultraviolet LEDs: A review of applications and semiconductor technologies[J]. Semicond Sci Technol, 2021, 36(12): 123001.

    [10] [10] ZHANG Dian. Preparation, structure and properties of nonstoichiometric AlN powders and high temperature epitaxial AlN layers[D]. Bei Jing: Beihang University, 2015.

    [11] [11] FU Danyang, GONG Jianchao, LEI Dan, et al. J Synth Cryst, 2020, 49(7): 1141-1156.

    [12] [12] DU L. Bulk crystal growth, characterization and thermodynamic analysis of aluminum nitride and related nitrides[D]. Lawrence: University of Kansas, 2011.

    [13] [13] SLACK G A, MCNELLY T F. Growth of high purity AlN crystals[J]. J Cryst Growth, 1976, 34(2): 263-279.

    [14] [14] DING K, AVRUTIN V, ?ZGüR ü, et al. Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes[J]. Crystals, 2017, 7(10): 300.

    [15] [15] GRANDUSKY J R, GIBB S R, MENDRICK M C, et al. Properties of mid-ultraviolet light emitting diodes fabricated from pseudomorphic layers on bulk aluminum nitride substrates[J]. Appl Phys Express, 2010, 3(7): 072103.

    [16] [16] KIM M, FUJITA T, FUKAHORI S, et al. AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates[J]. Appl Phys Express, 2011, 4(9): 092102.

    [17] [17] SHATALOV M, SUN W H, LUNEV A, et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%[J]. Appl Phys Express, 2012, 5(8): 082101.

    [18] [18] SCHOWALTER L J, SCHUJMAN S B, LIU W, et al. Development of native, single crystal AlN substrates for device applications[J]. Phys Status Solidi A, 2006, 203(7): 1667-1671.

    [19] [19] WUNDERER T, CHUA C L, YANG Z H, et al. Pseudomorphically grown ultraviolet C photopumped lasers on bulk AlN substrates[J]. Appl Phys Express, 2011, 4(9): 092101.

    [20] [20] MARTENS M, MEHNKE F, KUHN C, et al. Performance characteristics of UV-C AlGaN-based lasers grown on sapphire and bulk AlN substrates[J]. IEEE Photon Technol Lett, 2014, 26(4): 342-345.

    [21] [21] LIU Y, CAI Y, ZHANG Y, et al. Materials, design, and characteristics of bulk acoustic wave resonator: A review[J]. Micromachines, 2020, 11(7): 630.

    [22] [22] SUMETS M. Thin films of lithium niobate: Potential applications, synthesis methods, structure and properties[M]//Lithium Niobate- Based Heterostructures. U.K.: IOP Publishing, 2018: 1.

    [23] [23] PINTO R M R, GUND V, DIAS R A, et al. CMOS-integrated aluminum nitride MEMS: A review[J]. J Microelectromech Syst, 2022, 31(4): 500-523.

    [24] [24] FU Y Q, LUO J K, NGUYEN N T, et al. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications[J]. Prog Mater Sci, 2017, 89: 31-91.

    [25] [25] AKIYAMA M, KAMOHARA T, KANO K, et al. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering[J]. Adv Mater, 2009, 21(5): 593-596.

    [26] [26] CARO M A, ZHANG S Y, RIEKKINEN T, et al. Piezoelectric coefficients and spontaneous polarization of ScAlN[J]. J Phys Condens Matter, 2015, 27(24): 245901.

    [27] [27] TASNáDI F, ALLING B, H?GLUND C, et al. Origin of the anomalous piezoelectric response in wurtzite ScxAl1-xN alloys[J]. Phys Rev Lett, 2010, 104(13): 137601.

    [28] [28] MOREIRA M, BJURSTR?M J, KATARDJEV I, et al. Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications[J]. Vacuum, 2011, 86(1): 23-26.

    [29] [29] YOSHIDA S, MISAWA S, ITOH A. Epitaxial growth of aluminum nitride films on sapphire by reactive evaporation[J]. Appl Phys Lett, 1975, 26(8): 461-462.

    [30] [30] EPELBAUM B M, BICKERMANN M, NAGATA S, et al. Similarities and differences in sublimation growth of SiC and AlN[J]. J Cryst Growth, 2007, 305(2): 317-325.

    [31] [31] NOVESKI V, SCHLESSER R, RAGHOTHAMACHAR B, et al. Seeded growth of bulk AlN crystals and grain evolution in polycrystalline AlN boules[J]. J Cryst Growth, 2005, 279(1-2): 13-19.

    [32] [32] RADHAKRISHNAN SUMATHI R. Native seeding and silicon doping in bulk growth of AlN single crystals by PVT method[J]. Phys Status Solidi C, 2014, 11(3-4): 545-548.

    [33] [33] MELNIK Y, TSVETKOV D, PECHNIKOV A, et al. Characterization of AlN/SiC epitaxial wafers fabricated by hydride vapour phase epitaxy[J]. Phys Stat Sol (a), 2001, 188(1): 463-466.

    [34] [34] MELNIK Y, SOUKHOVEEV V, IVANTSOV V, et al. AlN substrates: Fabrication via vapor phase growth and characterization[J]. Phys Status Solidi A, 2003, 200(1): 22-25.

    [35] [35] KOVALENKOV O, SOUKHOVEEV V, IVANTSOV V, et al. Thick AlN layers grown by HVPE[J]. J Cryst Growth, 2005, 281(1): 87-92.

    [36] [36] ZHANG D, LIU F M, YAO Y, et al. AlN epilayers and nanostructures growth in a homebuilt alumina hot-wall high temperature chemical vapor deposition system[J]. J Mater Sci Mater Electron, 2014, 25(5): 2210-2219.

    [37] [37] ZHANG D, LIU F M, CAI L G. Investigation, characterization and effect of substrate position on thick AlN layers grown by high temperature chemical vapor deposition[J]. J Mater Sci Mater Electron, 2015, 26(2): 1239-1245.

    [38] [38] ZHANG D A, LIU F M, CAI L G. Structure, optical spectra and biaxial stress of (0002) AlN epilayers grown on c-sapphire by high-temperature chemical vapor deposition[J]. Phys Status Solidi A, 2014, 211(10): 2394-2402.

    [39] [39] YIN J H, CHEN D H, YANG H, et al. Comparative spectroscopic studies of MOCVD grown AlN films on Al2O3 and 6H-SiC[J]. J Alloys Compd, 2021, 857: 157487.

    [40] [40] MASTRO M A, EDDY C R, GASKILL D K, et al. MOCVD growth of thick AlN and AlGaN superlattice structures on Si substrates[J]. J Cryst Growth, 2006, 287(2): 610-614.

    [41] [41] CHANDRASEKARAN R, MOUSTAKAS T D, OZCAN A S, et al. Growth kinetics of AlN and GaN films grown by molecular beam epitaxy on R-plane sapphire substrates[J]. J Appl Phys, 2010, 108(4): 043501-043504.

    [42] [42] NECHAEV D V, ASEEV P A, JMERIK V N, et al. Control of threading dislocation density at the initial growth stage of AlN on c-sapphire in plasma-assisted MBE[J]. J Cryst Growth, 2013, 378: 319-322.

    [43] [43] SITAR Z, SCHLESSER R., DALMAU R, et al. Growth of AlN crystal by vaporization of Al and sublimation of AlN powder[C]//Proc. 21st Century COE Joint Workshop on Bulk Nitrides, IPAP Conf. Series 4. Tokyo, Japan, 2004: 41-45.

    [44] [44] SCHLESSER R, SITAR Z. Growth of bulk AlN crystals by vaporization of aluminum in a nitrogen atmosphere[J]. J Cryst Growth, 2002, 234(2-3): 349-353.

    [45] [45] YONEMURA M, KAMEI K, MUNETOH S. Precipitation of single crystalline AlN from Cu-Al-Ti solution under nitrogen atmosphere[J]. J Mater Sci Mater Electron, 2005, 16(4): 197-201.

    [46] [46] ADEKORE B T, RAKES K, WANG B, et al. Ammonothermal synthesis of aluminum nitride crystals on group III-nitride templates[J]. J Electron Mater, 2006, 35(5): 1104-1111.

    [47] [47] ITO S, FUJIOKA H, OHTA J, et al. Growth of AlN on lattice-matched MnO substrates by pulsed laser deposition[J]. Thin Solid Films, 2003, 435(1/2): 215-217.

    [48] [48] INOUE S, OKAMOTO K, MATSUKI N, et al. Epitaxial growth of AlN on Cu(111) substrates using pulsed laser deposition[J]. J Cryst Growth, 2006, 289(2): 574-577.

    [49] [49] RAGHAVAN S, REDWING J M. Intrinsic stresses in AlN layers grown by metal organic chemical vapor deposition on (0001) sapphire and (111) Si substrates[J]. J Appl Phys, 2004, 96(5): 2995-3003.

    [50] [50] SAHAR M A A Z M, HASSAN Z, NG S S, et al. An insight into growth transition in AlN epitaxial films produced by metal-organic chemical vapour deposition at different growth temperatures[J]. Superlattices Microstruct, 2022, 161: 107095.

    [51] [51] KITAGAWA S, MIYAKE H, HIRAMATSU K. High-quality AlN growth on 6H-SiC substrate using three dimensional nucleation by low-pressure hydride vapor phase epitaxy[J]. Jpn J Appl Phys, 2014, 53(5S1): 05FL03.

    [52] [52] ZHANG L, QI H T, CHENG H J, et al. Morphology and crystalline property of an AlN single crystal grown on AlN seed[J]. J Semicond, 2021, 42(5): 052101.

    [53] [53] NIKOLAEV A, NIKITINA I, ZUBRILOV A, et al. AlN wafers fabricated by hydride vapor phase epitaxy[J]. MRS Internet J Nitride Semicond Res, 2000, 5(1): 432-437.

    [54] [54] JEON H, LEE C M, LEE C B, et al. Thick AlN epilayer grown by using the HVPE method[J]. J Korean Phys Soc, 2015, 67(4): 643-647.

    [55] [55] KUMAGAI Y, YAMANE T, KOUKITU A. Growth of thick AlN layers by hydride vapor-phase epitaxy[J]. J Cryst Growth, 2005, 281(1): 62-67.

    [56] [56] KOUKITU A, KIKUCHI J, KANGAWA Y, et al. Thermodynamic analysis of AlGaN HVPE growth[J]. J Cryst Growth, 2005, 281(1): 47-54.

    [57] [57] BOICHOT R, CLAUDEL A, BACCAR N, et al. Epitaxial and polycrystalline growth of AlN by high temperature CVD: Experimental results and simulation[J]. Surf Coat Technol, 2010, 205(5): 1294-1301.

    [58] [58] LEDYAEV O Y, CHERENKOV A E, NIKOLAEV A E, et al. Properties of AlN layers grown on SiC substrates in wide temperature range by HVPE[J]. Phys Status Solidi C, 2003(1): 474-478.

    [59] [59] IMURA M, FUJIMOTO N, OKADA N, et al. Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio[J]. J Cryst Growth, 2007, 300(1): 136-140.

    [60] [60] KUMAGAI Y, SHIKAUCHI H, KIKUCHI J, et al. Is it possible to grow AlN by hydride vapor phase epitaxy[C]//Proc. 21st Century COE Joint Workshop on Bulk Nitrides, the Institute of Pure and Applied Physics Conference, Series 4, Tokyo, Japan, 2004: 9-13.

    [61] [61] NAGASHIMA T, HARADA M, YANAGI H, et al. High-speed epitaxial growth of AlN above by hydride vapor phase epitaxy[J]. J Cryst Growth, 2007, 300(1): 42-44.

    [62] [62] SU X J, HUANG J, ZHANG J P, et al. Microstructure and influence of buffer layer on threading dislocations in (0001) AlN/sapphire grown by hydride vapor phase epitaxy[J]. J Cryst Growth, 2019, 515: 72-77.

    [63] [63] SON H, LEE Y, KIM J H, et al. Structural and optical properties of AlN grown on nanopillar/patterned SiO2 by hydride vapor phase epitaxy[J]. Thin Solid Films, 2017, 626: 66-69.

    [64] [64] LEE G S, LEE C M, JEON H, et al. Growth of AlN layer on patterned sapphire substrate by hydride vapor phase epitaxy[J]. Jpn J Appl Phys, 2016, 55(5S): 05FC02.

    [65] [65] BALAJI M, CLAUDEL A, FELLMANN V, et al. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy[J]. J Alloys Compd, 2012, 526: 103-109.

    [66] [66] XIAO S Y, JIANG N, SHOJIKI K, et al. Preparation of high-quality thick AlN layer on nanopatterned sapphire substrates with sputter-deposited annealed AlN film by hydride vapor-phase epitaxy[J]. Jpn J Appl Phys, 2019, 58(SC): SC1003.

    [67] [67] CHEN J J, SU X J, HUANG J, et al. Effect of flux rate on AlN epilayers grown by hydride vapor phase epitaxy[J]. J Cryst Growth, 2021, 555: 125960.

    [68] [68] CHEN J J, HUANG J, SU X J, et al. Influence comparison of N2 and NH3 nitrogen sources on AlN films grown by halide vapor phase epitaxy[J]. Chin Phys B, 2020, 29(7): 076802.

    [69] [69] BOICHOT R, COUDURIER N, MERCIER F, et al. Epitaxial growth of AlN on c-plane sapphire by High Temperature Hydride Vapor Phase Epitaxy: Influence of the gas phase N/Al ratio and low temperature protective layer[J]. Surf Coat Technol, 2013, 237: 118-125.

    [70] [70] HUANG J, CHEN Q J, NIU M T, et al. Investigation on halide vapor phase epitaxial growth of AlN using N2 as N source[J]. J Cryst Growth, 2020, 536: 125567.

    [71] [71] WU P, FUNATO M, KAWAKAMI Y. Environmentally friendly method to grow wide-bandgap semiconductor aluminum nitride crystals: Elementary source vapor phase epitaxy[J]. Sci Rep, 2015, 5: 17405.

    [72] [72] LI D D, CHEN J J, SU X J, et al. Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE[J]. Chin Phys B, 2021, 30(3): 036801.

    [73] [73] CHEN J F, HUANG J, LI D D, et al. Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy[J]. Chin Phys B, 2022, 31(7): 076802.

    [74] [74] CHEN J J, SU X J, HUANG J, et al. Effects of 6H-SiC substrate polarity on the morphology and microstructure of AlN films by HVPE with varied V/III ratio[J]. J Cryst Growth, 2019, 507: 196-199.

    [75] [75] SUN M S, ZHANG J C, HUANG J, et al. AlN thin film grown on different substrates by hydride vapor phase epitaxy[J]. J Cryst Growth, 2016, 436: 62-67.

    [76] [76] FUJIKURA H, KONNO T, KIMURA T, et al. AlN nanostructures and flat, void-less AlN templates formed by hydride vapor phase epitaxy on patterned sapphire substrates[J]. Appl Phys Express, 2020, 13(2): 025506.

    [77] [77] USUI A, SUNAKAWA H, SAKAI A, et al. Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy[J]. Jpn J Appl Phys, 1997, 36(7B): L899.

    [78] [78] IMURA M, NAKANO K, NARITA G, et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers[J]. J Cryst Growth, 2007, 298: 257-260.

    [79] [79] LI X, ZHAO J Y, LIU T, et al. Growth of semi-polar AlN film on M-plane sapphire with high-temperature nitridation by HVPE[J]. Materials, 2021, 14(7): 1722.

    [80] [80] KUMAGAI Y, ENATSU Y, ISHIZUKI M, et al. Investigation of void formation beneath thin AlN layers by decomposition of sapphire substrates for self-separation of thick AlN layers grown by HVPE[J]. J Cryst Growth, 2010, 312(18): 2530-2536.

    [81] [81] HUANG J, NIU M T, ZHANG J C, et al. Reduction of threading dislocation density for AlN epilayer via a highly compressive-stressed buffer layer[J]. J Cryst Growth, 2017, 459: 159-162.

    [82] [82] AKIYAMA K, ARAKI T, MURAKAMI H, et al. In situ gravimetric monitoring of decomposition rate on the surface of (0001) c-plane sapphire for the high temperature growth of AlN[J]. Phys Status Solidi, 2007, 4(7): 2297-2300.

    [83] [83] SU X J, ZHANG J C, HUANG J, et al. Defect structure of high temperature hydride vapor phase epitaxy-grown epitaxial (0001) AlN/sapphire using growth mode modification process[J]. J Cryst Growth, 2017, 467: 82-87.

    [84] [84] NAGASHIMA T, HARADA M, YANAGI H, et al. Improvement of AlN crystalline quality with high epitaxial growth rates by hydride vapor phase epitaxy[J]. J Cryst Growth, 2007, 305(2): 355-359.

    [85] [85] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: A review[J]. Mater Sci Eng R Rep, 2005, 48(1): 1-46.

    [86] [86] DELMDAHL R, P?TZEL R, BRUNE J. Large-area laser-lift-off processing in microelectronics[J]. Phys Procedia, 2013, 41: 241-248.

    [87] [87] SPECK J S, BAKER T J, HASKELL B A. Wafer separation technique for the fabrication of free-standing (Al, In, Ga)N wafers: US20060234486[P]. 2006-10-19.

    [88] [88] KIM H M, OH J E, KANG T W. Preparation of large area free-standing GaN substrates by HVPE using mechanical polishing liftoff method[J]. Mater Lett, 2001, 47(4-5): 276-280.

    [89] [89] KUMAGAI Y, KUBOTA Y, NAGASHIMA T, et al. Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport[J]. Appl Phys Express, 2012, 5(5): 055504.

    [90] [90] AKIYAMA K, MURAKAMI H, KUMAGAI Y, et al. in situ Gravimetric monitoring of decomposition rate on surface of (1012)R-plane sapphire for high-temperature growth of nonpolar AlN[J]. Jpn J Appl Phys, 2008, 47(5): 3434-3437.

    [91] [91] LIU F, CHEN K F, XUE D F. How to fast grow large-size crystalS[J]. Innovation (Camb), 2023, 4(4): 100458.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Dian, ZHU Rongxin, YANG Xiaofeng, LIU Yijun. Research Progress of Hydride Vapor Phase Epitaxy Technology for AlN Single Crystal[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1761

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 14, 2023

    Accepted: --

    Published Online: Aug. 20, 2024

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20230714

    Topics