Optics and Precision Engineering, Volume. 31, Issue 3, 404(2023)

Defect detection of cylindrical surface of metal pot combining attention mechanism

Jian QIAO1...2, Nengda CHEN1, Yanxiong WU3, Yang WU1 and Jingwei YANG1,* |Show fewer author(s)
Author Affiliations
  • 1School of Electrical and Mechanical Engineering and Automation, Foshan University, Foshan528000, China
  • 2Ji Hua Laboratory, Foshan5800, China
  • 3School of Physics and Optoelectronic Engineering, Foshan University, Foshan528000, China
  • show less
    References(26)

    [1] [1] 1张静, 叶玉堂, 谢煜, 等. 金属圆柱工件缺陷的光电检测[J]. 光学 精密工程, 2014, 22(7): 1871-1876. doi: 10.3788/ope.20142207.1871ZHANGJ, YEY T, XIEY, et al. Optoelectronic inspection of defects for metal cylindrical workpieces[J]. Optics and Precision Engineering, 2014, 22(7): 1871-1876.(in Chinese). doi: 10.3788/ope.20142207.1871

    [2] [2] 2石炜, 张袁祥, 李嘉楠. 列车滚子轴承表面缺陷机器视觉检测方法研究[J]. 机械设计与制造, 2022(4): 183-186. doi: 10.3969/j.issn.1001-3997.2022.04.041SHIW, ZHANGY X, LIJ N. Research on machine vision detection method for surface defects of train roller bearings[J]. Machinery Design & Manufacture, 2022(4): 183-186.(in Chinese). doi: 10.3969/j.issn.1001-3997.2022.04.041

    [3] J H LIN, Y YAO, L MA et al. Detection of a casting defect tracked by deep convolution neural network. The International Journal of Advanced Manufacturing Technology, 97, 573-581(2018).

    [4] X H SUN, J N GU, R HUANG et al. Surface defects recognition of wheel hub based on improved faster R-CNN. Electronics, 8, 481(2019).

    [5] [5] 5王宸, 张秀峰, 刘超, 等. 改进YOLOv3的轮毂焊缝缺陷检测[J]. 光学 精密工程, 2021, 29(8): 1942-1954. doi: 10.37188/OPE.20212908.1942WANGCH, ZHANGX F, LIUCH, et al. Detection method of wheel hub weld defects based on the improved YOLOv3[J]. Optics and Precision Engineering, 2021, 29(8): 1942-1954.(in Chinese). doi: 10.37188/OPE.20212908.1942

    [6] [6] 6程婧怡, 段先华, 朱伟. 改进YOLOv3的金属表面缺陷检测研究[J]. 计算机工程与应用, 2021, 57(19): 252-258.CHENGJ Y, DUANX H, ZHUW. Research on metal surface defect detection by improved YOLOv3[J]. Computer Engineering and Applications, 2021, 57(19): 252-258.(in Chinese)

    [8] [8] 8伍济钢, 成远, 邵俊, 等. 基于改进YOLOv4算法的PCB缺陷检测研究[J]. 仪器仪表学报, 2021, 42(10): 171-178.WUJ G, CHENGY, SHAOJ, et al. A defect detection method for PCB based on the improved YOLOv4[J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 171-178.(in Chinese)

    [9] [9] 9罗钧, 曾伟, 龚燕峰, 等. 融入IBN-NET的轻量网络在金属圆柱工件缺陷识别中的应用[J]. 计算机辅助设计与图形学学报, 2020, 32(1): 112-120.LUOJ, ZENGW, GONGY F, et al. Application of lightweight network with IBN-NET in defect recognition of metal cylindrical workpieces[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(1): 112-120.(in Chinese)

    [10] Y LAN, W X XU. Insulator defect detection algorithm based on a lightweight network. Journal of Physics: Conference Series, 2181(2022).

    [11] Y F SHU, B LI, X M LI et al. Deep learning-based fast recognition of commutator surface defects. Measurement, 178, 109324(2021).

    [12] M X TAN, R M PANG, Q V LE. EfficientDet: scalable and efficient object detection, 10778-10787(2020).

    [13] Z H ZHENG, P WANG, D W REN et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics, 52, 8574-8586(2022).

    [15] S LIU, L QI, H F QIN et al. Path aggregation network for instance segmentation, 8759-8768(2018).

    [16] C Y WANG, H Y MARK LIAO, Y H WU et al. CSPNet: a new backbone that can enhance learning capability of CNN, 1571-1580(2020).

    [18] [18] 18陈欣, 万敏杰, 马超, 等. 采用多尺度特征融合SSD的遥感图像小目标检测[J]. 光学 精密工程, 2021, 29(11): 2672-2682. doi: 10.37188/OPE.20212911.2672CHENX, WANM J, MACH, et al. Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector[J]. Opt. Precision Eng., 2021, 29(11): 2672-2682.(in Chinese). doi: 10.37188/OPE.20212911.2672

    [19] [19] 19梁水波, 刘紫燕, 袁浩, 等. 注意力和多重特征融合的图像局部特征检测及描述[J]. 传感技术学报, 2021, 34(8): 1075-1081. doi: 10.3969/j.issn.1004-1699.2021.08.011LIANGSH B, LIUZ Y, YUANH, et al. Image local feature detection and description based on attention and multi-layer feature fusion[J]. Chinese Journal of Sensors and Actuators, 2021, 34(8): 1075-1081.(in Chinese). doi: 10.3969/j.issn.1004-1699.2021.08.011

    [20] [20] 20朱威, 王立凯, 靳作宝, 等. 引入注意力机制的轻量级小目标检测网络[J]. 光学 精密工程, 2022, 30(8): 998-1010. doi: 10.37188/OPE.20223008.0998ZHUW, WANGL K, JINZ B, et al. Lightweight small object detection network with attention mechanism[J]. Optics and Precision Engineering, 2022, 30(8): 998-1010.(in Chinese). doi: 10.37188/OPE.20223008.0998

    [21] J PARK, J Y LEE et al. CBAM: Convolutional Block Attention Module, 3-19(2018).

    [22] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2999-3007(2017).

    [23] S SHAHINFAR, P MEEK, G FALZON. How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring. Ecological Informatics, 57, 101085(2020).

    [24] J H YU, Y N JIANG, Z Y WANG et al. UnitBox: an advanced object detection network, 516-520(19).

    [25] H REZATOFIGHI, N TSOI, J GWAK et al. Generalized intersection over union: a metric and a loss for bounding box regression, 658-666(2020).

    [26] Z H ZHENG, P WANG, W LIU et al. Distance-IoU loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jian QIAO, Nengda CHEN, Yanxiong WU, Yang WU, Jingwei YANG. Defect detection of cylindrical surface of metal pot combining attention mechanism[J]. Optics and Precision Engineering, 2023, 31(3): 404

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jun. 1, 2022

    Accepted: --

    Published Online: Mar. 7, 2023

    The Author Email: YANG Jingwei (mejwyang@fosu.edu.cn)

    DOI:10.37188/OPE.20233103.0404

    Topics