Optics and Precision Engineering, Volume. 31, Issue 3, 404(2023)
Defect detection of cylindrical surface of metal pot combining attention mechanism
[1] [1] 1张静, 叶玉堂, 谢煜, 等. 金属圆柱工件缺陷的光电检测[J]. 光学 精密工程, 2014, 22(7): 1871-1876. doi: 10.3788/ope.20142207.1871ZHANGJ, YEY T, XIEY, et al. Optoelectronic inspection of defects for metal cylindrical workpieces[J]. Optics and Precision Engineering, 2014, 22(7): 1871-1876.(in Chinese). doi: 10.3788/ope.20142207.1871
[2] [2] 2石炜, 张袁祥, 李嘉楠. 列车滚子轴承表面缺陷机器视觉检测方法研究[J]. 机械设计与制造, 2022(4): 183-186. doi: 10.3969/j.issn.1001-3997.2022.04.041SHIW, ZHANGY X, LIJ N. Research on machine vision detection method for surface defects of train roller bearings[J]. Machinery Design & Manufacture, 2022(4): 183-186.(in Chinese). doi: 10.3969/j.issn.1001-3997.2022.04.041
[3] J H LIN, Y YAO, L MA et al. Detection of a casting defect tracked by deep convolution neural network. The International Journal of Advanced Manufacturing Technology, 97, 573-581(2018).
[4] X H SUN, J N GU, R HUANG et al. Surface defects recognition of wheel hub based on improved faster R-CNN. Electronics, 8, 481(2019).
[5] [5] 5王宸, 张秀峰, 刘超, 等. 改进YOLOv3的轮毂焊缝缺陷检测[J]. 光学 精密工程, 2021, 29(8): 1942-1954. doi: 10.37188/OPE.20212908.1942WANGCH, ZHANGX F, LIUCH, et al. Detection method of wheel hub weld defects based on the improved YOLOv3[J]. Optics and Precision Engineering, 2021, 29(8): 1942-1954.(in Chinese). doi: 10.37188/OPE.20212908.1942
[6] [6] 6程婧怡, 段先华, 朱伟. 改进YOLOv3的金属表面缺陷检测研究[J]. 计算机工程与应用, 2021, 57(19): 252-258.CHENGJ Y, DUANX H, ZHUW. Research on metal surface defect detection by improved YOLOv3[J]. Computer Engineering and Applications, 2021, 57(19): 252-258.(in Chinese)
[8] [8] 8伍济钢, 成远, 邵俊, 等. 基于改进YOLOv4算法的PCB缺陷检测研究[J]. 仪器仪表学报, 2021, 42(10): 171-178.WUJ G, CHENGY, SHAOJ, et al. A defect detection method for PCB based on the improved YOLOv4[J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 171-178.(in Chinese)
[9] [9] 9罗钧, 曾伟, 龚燕峰, 等. 融入IBN-NET的轻量网络在金属圆柱工件缺陷识别中的应用[J]. 计算机辅助设计与图形学学报, 2020, 32(1): 112-120.LUOJ, ZENGW, GONGY F, et al. Application of lightweight network with IBN-NET in defect recognition of metal cylindrical workpieces[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(1): 112-120.(in Chinese)
[10] Y LAN, W X XU. Insulator defect detection algorithm based on a lightweight network. Journal of Physics: Conference Series, 2181(2022).
[11] Y F SHU, B LI, X M LI et al. Deep learning-based fast recognition of commutator surface defects. Measurement, 178, 109324(2021).
[12] M X TAN, R M PANG, Q V LE. EfficientDet: scalable and efficient object detection, 10778-10787(2020).
[13] Z H ZHENG, P WANG, D W REN et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics, 52, 8574-8586(2022).
[15] S LIU, L QI, H F QIN et al. Path aggregation network for instance segmentation, 8759-8768(2018).
[16] C Y WANG, H Y MARK LIAO, Y H WU et al. CSPNet: a new backbone that can enhance learning capability of CNN, 1571-1580(2020).
[18] [18] 18陈欣, 万敏杰, 马超, 等. 采用多尺度特征融合SSD的遥感图像小目标检测[J]. 光学 精密工程, 2021, 29(11): 2672-2682. doi: 10.37188/OPE.20212911.2672CHENX, WANM J, MACH, et al. Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector[J]. Opt. Precision Eng., 2021, 29(11): 2672-2682.(in Chinese). doi: 10.37188/OPE.20212911.2672
[19] [19] 19梁水波, 刘紫燕, 袁浩, 等. 注意力和多重特征融合的图像局部特征检测及描述[J]. 传感技术学报, 2021, 34(8): 1075-1081. doi: 10.3969/j.issn.1004-1699.2021.08.011LIANGSH B, LIUZ Y, YUANH, et al. Image local feature detection and description based on attention and multi-layer feature fusion[J]. Chinese Journal of Sensors and Actuators, 2021, 34(8): 1075-1081.(in Chinese). doi: 10.3969/j.issn.1004-1699.2021.08.011
[20] [20] 20朱威, 王立凯, 靳作宝, 等. 引入注意力机制的轻量级小目标检测网络[J]. 光学 精密工程, 2022, 30(8): 998-1010. doi: 10.37188/OPE.20223008.0998ZHUW, WANGL K, JINZ B, et al. Lightweight small object detection network with attention mechanism[J]. Optics and Precision Engineering, 2022, 30(8): 998-1010.(in Chinese). doi: 10.37188/OPE.20223008.0998
[21] J PARK, J Y LEE et al. CBAM: Convolutional Block Attention Module, 3-19(2018).
[22] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2999-3007(2017).
[23] S SHAHINFAR, P MEEK, G FALZON. How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring. Ecological Informatics, 57, 101085(2020).
[24] J H YU, Y N JIANG, Z Y WANG et al. UnitBox: an advanced object detection network, 516-520(19).
[25] H REZATOFIGHI, N TSOI, J GWAK et al. Generalized intersection over union: a metric and a loss for bounding box regression, 658-666(2020).
[26] Z H ZHENG, P WANG, W LIU et al. Distance-IoU loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000(2020).
Get Citation
Copy Citation Text
Jian QIAO, Nengda CHEN, Yanxiong WU, Yang WU, Jingwei YANG. Defect detection of cylindrical surface of metal pot combining attention mechanism[J]. Optics and Precision Engineering, 2023, 31(3): 404
Category: Information Sciences
Received: Jun. 1, 2022
Accepted: --
Published Online: Mar. 7, 2023
The Author Email: YANG Jingwei (mejwyang@fosu.edu.cn)