Optics and Precision Engineering, Volume. 31, Issue 3, 404(2023)

Defect detection of cylindrical surface of metal pot combining attention mechanism

Jian QIAO1...2, Nengda CHEN1, Yanxiong WU3, Yang WU1 and Jingwei YANG1,* |Show fewer author(s)
Author Affiliations
  • 1School of Electrical and Mechanical Engineering and Automation, Foshan University, Foshan528000, China
  • 2Ji Hua Laboratory, Foshan5800, China
  • 3School of Physics and Optoelectronic Engineering, Foshan University, Foshan528000, China
  • show less
    Figures & Tables(17)
    Structure of BiYOLOX network
    Multiscale feature learning based on attention mechanism
    SAM module based on dilated convolution
    Variation curves of sinusoidal attenuation factor
    Example of classification loss function curves
    Image acquisition and detection system
    Samples of various defects on cylindrical surface of metal pot
    Target quantity distribution of various labels
    Statistics of defect recall rate of each category under different θ settings
    Detection results of cylindrical surface defects of highlight reflective metal pot
    • Table 1. Model super parameter setting

      View table
      View in Article

      Table 1. Model super parameter setting

      Super parameterValue
      Batch size4
      Cosine scheduler0.000 1
      Weight decay0.000 01
      NMS0.05
      Epoch300
    • Table 2. Performance comparison of feature fusion network

      View table
      View in Article

      Table 2. Performance comparison of feature fusion network

      Neck

      Params

      /M

      FLOPs

      /G

      FPS

      /(frame∙s-1

      mAP0.5

      /%

      PANet9.029.97728.0086.52
      BiFPN6.425.92432.2090.06
    • Table 3. Comparison of detection effect of regression loss functions

      View table
      View in Article

      Table 3. Comparison of detection effect of regression loss functions

      Reg_LossFPS/(frame∙s-1mAP0.5/%mAP0.75/%
      IoU32.1085.2036.20
      GIoU32.0086.1138.47
      DIoU32.0088.9435.29
      CIoU32.0089.3039.63
    • Table 4. Comparison of detection effect of classification loss functions

      View table
      View in Article

      Table 4. Comparison of detection effect of classification loss functions

      Obj_LossαγθmAP0.5/%mAP0.75/%
      FL0.751-90.0234.99
      FL0.752-89.3033.63
      SFL0.7510.25π90.1438.95
      SFL0.7510.5π91.3736.56
      SFL0.7510.75π90.9135.31
      SFL0.751π90.5835.01
    • Table 5. Performance comparison of feature fusion networks with Di_CBAM introduced at different locations

      View table
      View in Article

      Table 5. Performance comparison of feature fusion networks with Di_CBAM introduced at different locations

      IndexLocationFNF

      FPS/

      (frame∙s-1

      mAP0.5

      /%

      mAP0.75

      /%

      Add1Add2Add3Add4
      10000132.2289.5733.28
      21100129.9889.6635.68
      30011130.8490.9238.21
      40111129.7189.6934.57
      51111127.7089.5935.98
      61111027.7888.4633.52
    • Table 6. Comparison of impact of improvement strategies on model performance

      View table
      View in Article

      Table 6. Comparison of impact of improvement strategies on model performance

      IndexBiFPNDi_CBAMSFLFPS/(frame∙s-1mAP0.5/%mAP0.75/%
      100028.0086.5239.07
      210032.2090.0639.53
      301027.6088.1339.54
      400128.0086.8938.86
      511030.8490.3839.65
      610132.0091.3736.56
      701127.6088.2638.97
      811130.8490.9238.21
    • Table 7. Performance comparison of lightweight improved models

      View table
      View in Article

      Table 7. Performance comparison of lightweight improved models

      ModelParams/MFPS/(frame∙s-1mAP0.5/%mAP0.75/%
      Light-YOLOv38.628.7086.1235.92
      Light-YOLOv57.329.0687.3537.48
      YOLOX9.028.0086.5239.07
      BiYOLOX(Di_CBAM+SFL)6.430.8490.9238.21
    Tools

    Get Citation

    Copy Citation Text

    Jian QIAO, Nengda CHEN, Yanxiong WU, Yang WU, Jingwei YANG. Defect detection of cylindrical surface of metal pot combining attention mechanism[J]. Optics and Precision Engineering, 2023, 31(3): 404

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jun. 1, 2022

    Accepted: --

    Published Online: Mar. 7, 2023

    The Author Email: YANG Jingwei (mejwyang@fosu.edu.cn)

    DOI:10.37188/OPE.20233103.0404

    Topics