Optics and Precision Engineering, Volume. 30, Issue 4, 489(2022)
3D vehicle detection for unmanned driving systerm based on lidar
[1] [1] 1尹慧琳, 伍淑莉, 王亚伟, 等. 基于层次因子图的智能车环境感知和态势认知模型[J]. 控制与决策, 2020, 35(10): 2528-2534. doi: 10.13195/j.kzyjc.2019.0049YINH L, WUS L, WANGY W, et al. An intelligent vehicle environment perception and situation cognition model based on hierarchical factor graph[J]. Control and Decision, 2020, 35(10): 2528-2534.(in Chinese). doi: 10.13195/j.kzyjc.2019.0049
[2] [2] 2蔡云飞, 石庭敏, 唐振民. 基于双多线激光雷达的非结构化环境负障碍感知技术[J]. 自动化学报, 2018, 44(3): 569-576. doi: 10.16383/j.aas.2018.c160453CAIY F, SHIT M, TANGZ M. Negative obstacle perception in unstructured environment with double multi-beam LiDAR[J]. Acta Automatica Sinica, 2018, 44(3): 569-576.(in Chinese). doi: 10.16383/j.aas.2018.c160453
[3] [3] 3张燕咏, 张莎, 张昱, 等. 基于多模态融合的自动驾驶感知及计算[J]. 计算机研究与发展, 2020, 57(9): 1781-1799. doi: 10.7544/issn1000-1239.2020.20200255ZHANGY Y, ZHANGS, ZHANGY, et al. Multi-modality fusion perception and computing in autonomous driving[J]. Journal of Computer Research and Development, 2020, 57(9): 1781-1799.(in Chinese). doi: 10.7544/issn1000-1239.2020.20200255
[4] H V NGUYEN, H REZATOFIGHI et al. Online UAV path planning for joint detection and tracking of multiple radio-tagged objects. IEEE Transactions on Signal Processing, 67, 5365-5379(2019).
[5] E ARNOLD, O Y AL-JARRAH, M DIANATI et al. A survey on 3D object detection methods for autonomous driving applications. IEEE Transactions on Intelligent Transportation Systems, 20, 3782-3795(2019).
[6] L G PEREIRA, P FERNANDEZ, S MOURATO et al. Quality control of outsourced LiDAR data acquired with a UAV: a case study. Remote Sensing, 13, 419(2021).
[7] S JEONG, D KIM, S KIM et al. Real-time environmental cognition and sag estimation of transmission lines using UAV equipped with 3-D lidar system. IEEE Transactions on Power Delivery, 36, 2658-2667(2021).
[8] [8] 8赵泉华, 张洪云, 李玉. 采用非规则标识点过程的LiDAR点云数据目标提取[J]. 光学 精密工程, 2018, 26(5): 1201-1210. doi: 10.3788/OPE.20182605.1201ZHAOQ H, ZHANGH Y, LIY. Target extraction from LiDAR point cloud data using irregular geometry marked point process[J]. Opt. Precision Eng., 2018, 26(5): 1201-1210.(in Chinese). doi: 10.3788/OPE.20182605.1201
[9] [9] 9杨军, 党吉圣. 采用深度级联卷积神经网络的三维点云识别与分割[J]. 光学 精密工程, 2020, 28(5): 1187-1199.YANGJ, DANGJ S. Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network[J]. Opt. Precision Eng., 2020, 28(5): 1187-1199.(in Chinese)
[10] [10] 10徐国艳, 牛欢, 郭宸阳, 等. 基于三维激光点云的目标识别与跟踪研究[J]. 汽车工程, 2020, 42(1): 38-46. doi: 10.19562/j.chinasae.qcgc.2020.01.006XUG Y, NIUH, GUOC Y, et al. Research on target recognition and tracking based on 3D laser point cloud[J]. Automotive Engineering, 2020, 42(1): 38-46.(in Chinese). doi: 10.19562/j.chinasae.qcgc.2020.01.006
[11] [11] 11晏小彬, 彭道刚, 戚尔江. 基于地平面的单目视觉辅助激光雷达SLAM研究[J]. 光学学报, 2020, 40(24): 2428002.YANX B, PENGD G, QIE J. Research on ground-plane-based monocular aided LiDAR SLAM[J]. Acta Optica Sinica, 2020, 40(24): 2428002.(in Chinese)
[12] [12] 12赵传, 张保明, 余东行, 等. 利用迁移学习的机载激光雷达点云分类[J]. 光学 精密工程, 2019, 27(7): 1601-1612. doi: 10.3788/OPE.20192707.1601ZHAOC, ZHANGB M, YUD H, et al. Airborne LiDAR point cloud classification using transfer learning[J]. Opt. Precision Eng., 2019, 27(7): 1601-1612.(in Chinese). doi: 10.3788/OPE.20192707.1601
[13] [13] 13黄如林, 梁华为, 陈佳佳, 等. 基于激光雷达的无人驾驶汽车动态障碍物检测、跟踪与识别方法[J]. 机器人, 2016, 38(4): 437-443. doi: 10.13973/j.cnki.robot.2016.0437HUANGR L, LIANGH W, CHENJ J, et al. Lidar based dynamic obstacle detection, tracking and recognition method for driverless cars[J]. Robot, 2016, 38(4): 437-443.(in Chinese). doi: 10.13973/j.cnki.robot.2016.0437
[14] Q MENG, W WANG, T ZHOU et al. Towards A weakly supervised framework for 3D point cloud object detection and annotation. IEEE Transactions on Pattern Analysis and Machine Intelligence(2021).
[15] L F MA, Y LI, J LI et al. Multi-scale point-wise convolutional neural networks for 3D object segmentation from LiDAR point clouds in large-scale environments. IEEE Transactions on Intelligent Transportation Systems, 22, 821-836(2021).
[16] [16] 16樊俊杰, 梁华为, 祝辉, 等. 基于双目视觉的四边形闭环跟踪算法[J]. 机器人, 2015, 37(6): 674-682. doi: 10.13973/j.cnki.robot.2015.0674FANJ J, LIANGH W, ZHUH, et al. Closed quadrilateral feature tracking algorithm based on binocular vision[J]. Robot, 2015, 37(6): 674-682.(in Chinese). doi: 10.13973/j.cnki.robot.2015.0674
[17] [17] 17刘健, 梁华为, 梅涛, 等. 基于道路形态分析的道路边界提取[J]. 机器人, 2016, 38(3): 322-328. doi: 10.13973/j.cnki.robot.2016.0322LIUJ, LIANGH W, MEIT, et al. Road curb extraction based on road shape analysis[J]. Robot, 2016, 38(3): 322-328.(in Chinese). doi: 10.13973/j.cnki.robot.2016.0322
[18] [18] 18吴毅华, 梁华为, 王智灵, 等. 基于激光雷达回波信号的自适应阈值车道线检测[J]. 机器人, 2015, 37(4): 451-458.WUY H, LIANGH W, WANGZ L, et al. Lane marking detection of adaptive threshold based on echo signal of lidar[J]. Robot, 2015, 37(4): 451-458.(in Chinese)
[19] [19] 19崔鑫, 闫秀天, 李世鹏. 保持特征的散乱点云数据去噪[J]. 光学 精密工程, 2017, 25(12): 3169-3178. doi: 10.3788/OPE.20172512.3169CUIX, YANX T, LIS P. Feature-preserving scattered point cloud denoising[J]. Opt. Precision Eng., 2017, 25(12): 3169-3178.(in Chinese). doi: 10.3788/OPE.20172512.3169
[20] [20] 20杨傲雷, 曹裕, 徐昱琳, 等. 基于深度卷积网络的多目标动态三维抓取位姿检测方法[J]. 仪器仪表学报, 2019, 40(12): 135-142.YANGA L, CAOY, XUY L, et al. Dynamic multi-target 3D grasp posture detection approach based on deep convolutional network[J]. Chinese Journal of Scientific Instrument, 2019, 40(12): 135-142.(in Chinese)
[21] G J WANG, J WU, T XU et al. 3D vehicle detection with RSU LiDAR for autonomous mine. IEEE Transactions on Vehicular Technology, 70, 344-355(2021).
[22] K ZHAO, L LIU, Y MENG et al. 3D detection for occluded vehicles from point clouds. IEEE Intelligent Transportation Systems Magazine, 2-14(4897).
Get Citation
Copy Citation Text
Xiru WU, Qiwei XUE. 3D vehicle detection for unmanned driving systerm based on lidar[J]. Optics and Precision Engineering, 2022, 30(4): 489
Category: Information Sciences
Received: Jul. 8, 2021
Accepted: --
Published Online: Mar. 4, 2022
The Author Email: WU Xiru (xiruwu520@163.com)