Optics and Precision Engineering, Volume. 30, Issue 4, 489(2022)

3D vehicle detection for unmanned driving systerm based on lidar

Xiru WU* and Qiwei XUE
Author Affiliations
  • College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin541004, China
  • show less
    Figures & Tables(15)
    Overall framework of 3D vehicle detection algorithm
    Image before filtering point cloud data
    Image after filtering point cloud data
    Image before RANSAC ground segmentation
    Image after RANSAC ground segmentation
    Frame of obstacle detection network
    Fusion sampling process
    Center point selection block diagram
    3D vehicle detection result of experiment 1
    3D vehicle detection result of experiment 2
    3D vehicle detection result of experiment 3
    • Table 1. Point cloud statistical filtering algorithm

      View table
      View in Article

      Table 1. Point cloud statistical filtering algorithm

      算法:点云统计滤波算法

      步骤1 创建PCL滤波器对象。

      步骤2 设置待滤波点云数据。

      步骤3 统计时考虑查询点临近点数。

      步骤4 根据设定阈值判断是否为离群点。

      步骤5 剔除离群点。

      步骤6 重复步骤3-步骤5直至所有点距离小于dmax

    • Table 2. RANSAC segmentation algorithm

      View table
      View in Article

      Table 2. RANSAC segmentation algorithm

      算法:RANSAC算法

      步骤1 在点云中随机选取三个点并计算任意一点与平面距离di

      n=(P2-P1)×(P3-P1)

      di=nT(Pi-P1)n2

      其中,Pi为点云任意一点,i=4,5,,N

      步骤2 设定阈值di=τ保存点云并扫描激光雷达数据的点云数量。

      步骤3 重复步骤1至步骤3共T次,将点数量最多的点云保存下来以拟合出准确的平面参数。

      T=log(1-q)log[1-(1-e)s]

      e:点云数据中异常点的比例;

      s:每次迭代选取点的数量;

      T:RANSAC 最大迭代次数;

      q:至少一次选取到正常点的概率。

      步骤4 若阈值di<τ=2σ则设定为地面点并在点云数据中剔除。

      σ=i=1N(di-d¯)2N-1

      其中,d¯=1N1Ndi

    • Table 3. Comparison of pretreatment models

      View table
      View in Article

      Table 3. Comparison of pretreatment models

      样本

      序号

      预处理前预处理后

      样本

      点数

      邻近距离方差

      样本

      点数

      邻近距离方差
      116 2100.360.815 4180.290.1
      215 4470.590.714 5010.490.3
      317 7300.480.516 9460.420.4
    • Table 4. Performance comparison of 3D detection network

      View table
      View in Article

      Table 4. Performance comparison of 3D detection network

      算法检测精度时间/s
      实验1实验2实验3
      AVOD66.47%76.39%60.23%0.08
      3DBN73.53%83.77%66.23%0.13
      Point-GNN79.47%88.33%72.29%0.60
      F-PointNet69.79%82.19%60.59%0.17
      本文算法75.32%89.72%74.26%0.12
    Tools

    Get Citation

    Copy Citation Text

    Xiru WU, Qiwei XUE. 3D vehicle detection for unmanned driving systerm based on lidar[J]. Optics and Precision Engineering, 2022, 30(4): 489

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jul. 8, 2021

    Accepted: --

    Published Online: Mar. 4, 2022

    The Author Email: WU Xiru (xiruwu520@163.com)

    DOI:10.37188/OPE.20223004.0489

    Topics