Infrared and Laser Engineering, Volume. 50, Issue 10, 20200489(2021)

Influence of indium composition of n waveguide layer on photoelectric performance of GaN-based green laser diode

Tiantian Jia1... Hailiang Dong1, Zhigang Jia1, Aiqin Zhang2, Jian Liang3, and Bingshe Xu14 |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
  • 2College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • 3College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • 4Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi’an 710021, China
  • show less
    References(25)

    [1] Y Liu, Y Liu, H D Xiao, et al. 638 nm narrow linewidth diode laser with a grating external cavity. Chinese Optics, 13, 1249-1256(2020).

    [2] Y X Cao, S L Shu, F Y Sun, et al. Development of beam combining technology in mid-infrared semiconductor lasers (Invited). Infrared and Laser Engineering, 47, 1003002(2018).

    [3] B C Qiu, H Hu, W M Wang, et al. Design and fabrication of 12 W high power and high reliability 915 nm semiconductor lasers. Chinese Optics, 11, 590-603(2018).

    [4] H W Xu, Y Q Ning, Y G Zeng, et al. Design and epitaxial growth of quantum-well for 852 nm laser diode. Optics and Precision Engineering, 21, 590-597(2013).

    [5] B H Yang, Y D Cai, Z X Wen, et al. Automatic compensation method for beam drift in long-distance laser measurement. Optics and Precision Engineering, 28, 2393-2402(2020).

    [6] T Lan, G Z Zhou, Y Li, et al. Mitigation of efficiency droop in an asymmetric GaN-based high-power laser diode with sandwiched GaN/InAlN/GaN lower quantum barrier. IEEE Photonics Journal, 10, 1-8(2018).

    [7] D M Zhao, D G Zhao. Analysis of the growth of GaN epitaxy on silicon. Journal of Semiconductors, 39, 033006(2018).

    [8] A Q Tian, L Hu, L Q Zhang, et al. Design and growth of GaN-based blue and green laser diodes. Science China Materials, 63, 1348-1363(2020).

    [9] T Lermer, M Schillgalies, A Breidenassel, et al. Waveguide design of green InGaN laser diodes. Physica Status Solidi, 207, 1328-1331(2010).

    [10] Y Zhang, P Xu. Research progress of GaN-based lasers. Nonferrous Metal Materials and Engineering, 41, 54-60(2020).

    [11] L Q Zhang, D S Jiang, J J Zhu, et al. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green. Journal of Applied Physics, 105, 023104(2009).

    [12] M X Feng, Q Sun, J P Liu, et al. Al-free cladding-layer blue laser diodes with a low aspect ratio in far-field beam pattern. Journal of Semiconductors, 39, 61-65(2018).

    [13] F Liang, D G Zhao, D S Jiang, et al. Influence of optical field distribution on GaN-based green laser diodes. Chinese Journal of Lasers, 47, 0701018(2020).

    [14] G Muziol, H Turski, M Siekacz, et al. Elimination of leakage of optical modes to GaN substrate in nitride laser diodes using a thick InGaN waveguide. Applied Physics Express, 9, 092103(2016).

    [15] F Liang, D G Zhao, D P Jiang, et al. Suppression of optical field leakage in GaN-based green laser diode using graded-indium n-InxGa1-xN lower waveguide. Superlattices and Microstructures, 132, 106153(2019).

    [16] F Z Tang, T T Zhu, W Y Fu, et al. Insight into the impact of atomic- and nano-scale indium distributions on the optical properties of InGaN/GaN quantum well structures grown on m-plane freestanding GaN substrates. Journal of Applied Physics, 125, 225704(2019).

    [17] [17] Kawaguchi M, Imafuji O, Nozaki S, et al. Opticalloss suppressed InGaN laser diodes using undoped thick waveguide structure[C]Conference on Gallium Nitride Materials Devices XI, 2016, 9748: 974818.

    [18] [18] Erbert G, Bugge F, Knigge A, et al. Highly reliable 75W InGaAsAlGaAs laser bars with over 70% conversion efficiency [C]Proceedings of SPIE–The International Society f Optical Engineering, 2007, 6133: 61330B.

    [19] F Liang, D P Zhao, D S Jiang, et al. New design of upper waveguide with unintentionally doped InGaN layer for InGaN-based laser diode. Optics & Laser Technology, 97, 284-289(2017).

    [20] S Jong-In, K Hyungsung, S Dong-Soo, et al. An explanation of efficiency droop in InGaN-based light emitting diodes: saturated radiative recombination rate at randomly distributed In-rich active areas. Journal- Korean Physical Society, 58, 503-508(2011).

    [21] H L Dong, T T Jia, J Liang, et al. Improved carrier transport and photoelectric properties of InGaN/GaN multiple quantum wells with wider well and narrower barrier. Optics & Laser Technology, 129, 106309(2020).

    [22] David, A, M J Grundmann, J F Kaeding, et al. Carrier distribution in (0001) InGaN∕GaN multiple quantum well light-emitting diodes. Applied Physics Letters, 92, 053502(2008).

    [23] F Chong, J Wang, C Xiong, et al. An asymmetric broad waveguide structure for a 0.98-μm high-conversion-efficiency diode laser. Journal of Semiconductors, 30, 64-67(2009).

    [24] D P Bour, A Rosen. Optimum cavity length for high conversion efficiency quantum well diode lasers. Journal of Applied Physics, 66, 2813-2818(1989).

    [25] Z W Xu, Y Qu, Y Z Wang, et al. Simulation analysis of high power asymmetric 980 nm broad-waveguide diode lasers. Infrared and Laser Engineering, 43, 1094-1098(2014).

    Tools

    Get Citation

    Copy Citation Text

    Tiantian Jia, Hailiang Dong, Zhigang Jia, Aiqin Zhang, Jian Liang, Bingshe Xu. Influence of indium composition of n waveguide layer on photoelectric performance of GaN-based green laser diode[J]. Infrared and Laser Engineering, 2021, 50(10): 20200489

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Nov. 18, 2020

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email:

    DOI:10.3788/IRLA20200489

    Topics